
Abstract—This paper evaluates a mechanism for applying
machine learning (ML) to identify over-constrained IaaS virtual
machines (VMs). Herein, over-constrained VMs are defined as
those who are not given sufficient system resources to meet their
workload specific objective functions. To validate our approach, a
variety of workload-specific benchmarks inspired by common
Infrastructure-as-a-Service (IaaS) cloud workloads were used.
Workloads were run while regularly sampling VM resource
consumption features exposed by the hypervisor. Datasets were
curated into nominal or over-constrained and used to train ML
classifiers to determine VM over-constraint rules based on one-
time workload analysis. Rules learned on one host are transferred
with the VM to other host environments to determine portability.
Key contributions of this work include: demonstrating which VM
resource consumption metrics (features) prove most relevant to
learned decision trees in this context, and a technique required to
generalize this approach across hosts while limiting required up
front training expenditure to a single VM and host. Other
contributions include a rigorous explanation of the differences in
learned rulesets as a function of feature sampling rates, and an
analysis of the differences in learned rulesets as a function of
workload variation. Feature correlation matrices and their
corresponding generated rule sets demonstrate individual features
comprising rule sets tend to show low cross-correlation (below 0.4)
while no individual feature shows high direct correlation with
classification. Our system achieves workload-specific error
percentages below 2.4% with a mean error across workloads of
1.43% (and strong false negative bias) for a variety of synthetic,
representative, cloud workloads tested.

Keywords—virtual machines; cloud-computing; IaaS
management; decision trees; support vector machines; binary
classification; cloud provisioning; resource allocation.

I. INTRODUCTION

Generally, existing systems require the VM operator to

install a software agent in the VM that can be used to gather
information and drive a monitor-analyze-remediate
management loop for VM resource allocation decisions. Out-of-
band monitoring, or agentless monitoring, is simpler to install
and administer (centralized on the hypervisor not the VMs) and
does not restrict the VM owner by imposing an agent or any
other requirements into their VM. The lack of interference or
imposed requirements on IaaS cloud VMs cannot be
understated, as this cloud type caters to arbitrary OS images.

While out-of-band agents suffer from reduced visibility into
the behavior of the system being monitored, the benefits of
black-box monitoring for VM management in IaaS makes it a

compelling research prospect. The long running (indefinite
execution) nature of VM processes indicate that the overhead
associated with the measurement and detection needed for load
balancing may be well worth the cost in contrast to short lived
process management where black box techniques are typically
not used. This work aims to improve existing systems through
the more challenging, and more applicable to the IaaS context,
black-box monitoring approach in an host-independent context.

II. RELATED WORK

A variety of prior work seeks to determine over-
constraint/overload detection in real time, or by anticipating
future workload demands. However, these previous efforts
select, a priori, the feature of interest to trigger their remediation
on based on intuition. They most often use CPU consumption
(or another univariate trigger). Beyond static thresholding, some
recent work uses heuristics based on statistical analysis of
historical VM resource consumption [1,2], effectively using
adaptive thresholds based on statistical properties [3]. One
alternative technique uses pattern-driven application
consolidation by examining patterns of resource usage
(signatures in their work), and applying dynamic time warping
and the fast Fourier transform to seek a match between available
host capacity and individual VM resource demand signatures
[4]. Though that effort was principally aimed at periodic global
consolidation in environments with high workload periodicity,
instantaneous overload/over-consolidation strategies were
discussed, relying on a single predictor exceeding a static
threshold. In contrast to these efforts, we use a data driven
approach to determine a multivariate over-constraint indicator.

Other recent works focus on the shift from immediate
overload detection to anticipatory systems by applying a variety
of techniques such as: linear regression [5] for short term CPU
prediction, auto-regressive integrated moving averages [6], and
more sophisticated schemes that apply longer term prediction
augmented with uncertainty estimation [7] (though that work
also defines a key concept of SLA violation in terms of CPU
consumption of the VM compared to allocated CPU share for
that VM). Our work differs through use ML to define the salient
characteristics indicating over-constraint. Our technique can
employ any of these forecasting methods to move into an
anticipatory modality, and thus may enhance these systems by
projecting recent feature observations into the future (using the
preferred forecasting technique) and inputting those projections
into the machine learned, multivariate, over constraint classifier.

A Host-Independent Supervised Machine Learning
Approach to Automated Overload Detection in

Virtual Machine Workloads

 Eli M. Dow Jeanna N. Matthews
 IBM Research Clarkson University

 Yorktown, NY Potsdam, NY
 emdow@us.ibm.com jnm@clarkson.edu

 Our work is most strongly inspired by Vigilant, a system
based on out-of-band monitoring. Vigilant determined the health
and status of a VM based solely on data observations that were
accessible from the hypervisor context [8]. Vigilant specifically
targeted the detection of extremely high CPU utilization in
kernel space. The experimental results from Vigilant show that
certain types of problem conditions in VMs could be detected
out-of-band with high accuracy while avoiding the pitfalls
associated with in-band monitoring. Like Vigilant, our system
monitors the hypervisor for VM utilization information and uses
a decision tree classifier ML method [9] to analyze the readings
at run time and detect problems in situ. Though Vigilant was the
first system to combine the ease of out-of-band data collection
with ML to improve VM systems management, their work was
focused on detecting a limited set of faults (e.g., halt on error
conditions). Our own work provides a generalization of their
approach to autonomously detecting VM over-consolidation.
Those curious about the details of the virtualization differences
in Vigilant and our own work should note their work was based
on the QEMU emulator [11] with each emulated machine
running a different type of workload (web service, mail service,
etc.). Since QEMU underpins the operation of KVM virtual
machines [12] it follows then that their preliminary results
should guide our investigation using KVM.

III. RESEARCH QUESTIONS AND METHODOLOGY

Motivated by interest into autonomous over-constraint detection
for VMs, this work asks the following research questions:

1. Which features or resource metrics are most useful in automatically
identifying over-constraint in IaaS cloud computing environments?

2. How do the rule sets of learned classifiers vary across common IaaS VM
workload types?

3. How portable are learned classifiers? Specifically, can they be implemented
such that an unmodified classifier can travel with the virtual machine to other
hosts while retaining applicability?

4. What are the differences in learned classifiers as a function of sampling
frequency? Can one determine a lower bound on practical sampling intervals?

Experimentation was done on a KVM hypervisor using a VM
created from scratch and configured with a variety of
middleware and workloads to be executed while under
observation from our black-box VM monitoring software
(running on the hypervisor). Both the hypervisor OS and VM
were Ubuntu version 16.04 (the current release at the time of
experimentation). The workloads installed on the VM are
enumerated in section A: Workload Overview while data
collection methodology is explained in section B: Experimental
Data Recording. Each workload was run (while data was
collected from within the VM to annotate over-constraint
conditions) concurrently with externally visible data collection
at the hypervisor. Workload-aware data (for ground truth)
enables supervised ML on the black box data.

A. Workload Overview
A series of representative, synthetic, surrogate IaaS

workloads were identified as a basis for evaluation spanning
three major categories:

1) HTTP-PHP Workload: Workloads are executed against
our HTTP [13] and PHP [14] installation by using the

1 To test our HTTP-based workload we performed a nominal installation of the Apache web server using the “apt-get install
apache2” command. Once a minor change was made to the default configuration of Apache to silence a configuration-file
related warning, we proceeded to install PHP to create more realistic web content to serve based on the observation that web
pages are not simply static HTML. Once installed and configured, a simple PHP page was created to exercises the PHP runtime.

apachebench benchmark utility1 [15]. The individual runs were
configured to flag unconstrained VM situations when 90% of
page responses were received in less than 3 seconds. When
more than 10 percent of the page responses take more than 10
seconds, we consider the HTTP VM server to be over-
constrained. This threshold was based on the observation that
web pages that fail to load instantly are considered too slow for
production. Consumers invariably become frustrated with
latencies, especially on mobile devices. Individual page
responses taking longer than 5 seconds to return are tallied as
errors. The number of concurrent requests were scaled
iteratively from 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350,
400, 500, and 1000. Each iteration is run for 60 seconds before
the next iteration to allow a gradual workload ramp up. The
workload logs the start and end time of each iteration as well as
when the over-constraint event.

2) Database Workload: To execute a workload against the
database instance, we installed the mysqlslap2 [16]. Overload
was defined by any individual slap invocation with an average
query latency exceeding 5 seconds. The workload similarly logs
start, end, and over-constraint event timing.

3) I/O Dominated Workloads (Simulated File Serving): To
simulate file I/O oriented workloads performed in the cloud the
filebench workload engine was selected and configured to
emulate the file access patterns of a streaming video server.
This configuration simulated new content creation (uploads)
and aging out of older content in such a way as to simulate
services like YouTube. The workload has 2 components, one
which creates new content and one serving the content. The
workload distinguishes between actively served videos and
aged content (paged out to disk). We manipulated the number
of threads representing streaming users over the range of [40-
60], incrementing by one additional thread per iteration until the
number of reported I/O operations per second fell below a
configured threshold (300). Each iteration ran for at least 60
seconds, with videos replaced once every 10 seconds.

B. Experimental Data Recording
To record a pure data set, each VM was exercised in isolation

on an idle KVM host. Our black-box monitoring software was
started early to capture the full VM boot up process as well as a
training workload interval and an idle interval. Since patterns of
resource consumption at boot-up are often drastically different
than operational workloads, VM restarts under monitoring
might otherwise appear to show atypical workload profiles from
out-of-band. The VMs reached a quiescent state of activity prior
to starting workloads, and were run until over-constraint was
triggered. Values logged during black-box hypervisor data
collection are obtained principally from the /proc virtual file
system [17] on the hypervisor.

Samples were obtained at 1Hz for each of the features
monitored and are listed with explanation in Table I. Fig. 1
illustrates a plot that is representative of the fundamental data
collection for each of the experiments performed. The figure,
representative of the data collected from all experiments, was
taken from a single HTTP run. The abscissa shows time in
seconds from experiment start, covering approximately 10
minutes in elapsed time. Each stacked subplot shows the time

2
 A freely available database linked from the MySQL documentation page (dev.mysql.com/doc/index-other.html) was installed

to provide reasonable test data for the MySQL workload. The database is described as "employee data (large dataset, includes
data and test/verification suite).” Since one table had almost half a million rows of populated data, the design criteria for a
sufficiently large dataset was satisfied.

series of observations from a single feature. Only features with
nonzero series are shown (some features are not shown where
no data was collected). Several seemingly relevant features
hypothesized to be useful in Table 1 produced no usable
observations in our experiments. Those features showing
predictive power are marked in bold. Upon investigation, many
parameters are not relevant to KVM VMs (though would likely
be relevant in other hypervisors). Several constituent feature
time series show high correlation but are in fact distinct when
viewed at high resolution. The left most 1/6th of Fig. 1
corresponds to VM boot-up. Series labels in inset boxes
correspond to the entries in Table I. Post-processing of
instrumented workload logs created during the collection of this
data allowed annotation as nominal or over-constrained, forming
the basis of our supervised binary classification scheme.

IV. EXPERIMENTAL RESULTS

This section provides an analysis of our experimental results.
First, we present an overview of the multivariate data we
collected across workloads and our analysis approach. Second,
this section describes the features that were found to initially
have predictive power from our set of reasonable guess features
in Table II. Following that, we present an investigation into the
effect of feature observation variance on learned rules,
quantifying rule set accuracy. This section concludes with an
analysis of networking setup and observation sampling regime
sensitivity as well as analysis of learned rule set portability.

 For each workload run, feature-specific data was analyzed
using a series of automated plots and analysis for manual
inspection. This analysis included time series plots of each
feature to observe general trends in the series as well as ensuring
each observation was recorded correctly. Box and whisker plots
were created for each feature to characterize the variance of
feature observations. Histograms of observed features were
created as well as a scatterplot of each feature against the
determined classification. The histogram plots of observed
values were performed to determine what, if any, type of
distribution the feature corresponds to. Many ML models
assume a Gaussian distribution, and surprisingly none of our
observations corresponded to a Gaussian distribution. In the
scatterplot analysis of each observation, the corresponding
determined classification was encoded as a 1 or 0, with 1
meaning over-constrained or under-performing the experimental
threshold for successful virtual machine operation response, and
0 meaning nominal or well-performing VM response.

TABLE I. OBSERVED KERNEL FEATURES

Feature Description

CPU Amount of time that this process was scheduled in both kernel and
user-blospace time as a percentage of all time elapsed. From
/proc/[pid]/stat

UT Amount of time that this process has been scheduled in user mode,
measured in clock ticks. This includes guest time, guest_time (time
spent running a virtual CPU, see below), so that applications that are
not aware of the guest time field do not lose that time from their
calculations. “Utime” value from /proc/[pid]/stat

ST Amount of time that this process has been scheduled in kernel mode,
measured in clock ticks. “Stime” value from /proc/[pid]/stat

CUT Amount of time that this process's waited-for children have been
scheduled in user mode, measured in clock ticks. This includes guest
time, cguest_time (time spent running a virtual CPU, see below).
“Cu_time” value from /proc/[pid]/stat

CST Amount of time a process's waited-for children have been scheduled in
kernel mode, in clock ticks. “Cs_time” value from /proc/[pid]/stat

GT Time spent running a virtual CPU for a guest operating system, in
clock ticks. “Guest_time” value from /proc/[pid]/stat

CGT Guest time (GT) of the process's children, measured in clock ticks.
“Cguest_time” value. from /proc/[pid]/stat

DLY Obtained from /proc/pid/schedstat, indicates the time spent waiting on
a kernel run queue but not executing.

RCK The number of bytes which this task has caused to be read from
storage. This is simply the sum of bytes which this process passed to
read() and pread(). It includes things like tty IO and it is unaffected by
whether actual physical disk IO was required (the read might have
been satisfied from page cache). From /proc/[pid]/io

WCK The number of bytes which this task has caused, or shall cause to be
written to disk. Similar caveats apply here as with RCK. From
/proc/[pid]/io

RBK The number of bytes which this process fetched from the storage layer.
Done at the submit_bio() level. From /proc/[pid]/io

WBK Number of bytes which this process caused to be sent to the storage
layer. This is done at page-dirtying time. From /proc/[pid]/io

RXB Received bytes from virDomainInterfaceStats struct in libvirt

RXP Received packets from virDomainInterfaceStats struct in libvirt

RXE Receiver side errors from virDomainInterfaceStats struct in libvirt

RXD Receiver side dropped packets from virDomainInterfaceStats struct in
libvirt

TXB Transmitted bytes from virDomainInterfaceStats struct in libvirt

TXP Transmitted packets from virDomainInterfaceStats struct in libvirt

TXE Transmission side errors from virDomainInterfaceStats struct in libvirt

TXD Transmission side dropped packets from virDomainInterfaceStats
struct in libvirt

PF1 Count of minor faults the process has made which have not required
loading a memory page from disk. “Minflt” value from /proc/[pid]/stat.

PF2 The number of minor faults that the process's waited-for children have
made. “Cminflt” value.

PF3 The number of major faults the process has made which have required
loading a memory page from disk. “Majflt” value from
/proc/[pid]/stat.

PF4 The number of minor faults that the process's waited-for children have
made. “Cmajflt” value from /proc/[pid]/stat.

BIO Aggregated block I/O delays, measured in clock ticks, expressed as a
rate per time. “Delayacct_blkio_ticks” value from /proc/[pid]/stat.

Fig. 1. An example experiment time series set showing observed feature series
shown to illustrate high-level feature series similarity across some feature
subplots. Such subplots, in higher resolution than can be reproduced here for
publication length limitations, were used to validate our collection framework.

 In addition to univariate analysis of features, an
examination of the multivariate data set (across all features)
from each experiment was performed. A representative
example Andrews plot [18] for the HTTP workload is shown in
Fig. 2. A type of signal, shown in teal (darker) distinguishes
over-constrained data values against background of gold
(lighter) nominal values. This signal is what our ML approach
attempts to discern from the feature vector observations. Since
some signal seems apparent, we next sought to answer if any
individual variable had overwhelming predictive power or if
features showed high cross-correlation. Each attribute of an
observational data set row is represented by a point on the line,
like a line chart, but the way data is translated into a plot is
substantially different. Each column from the data set is
normalized independently and smoothed.

Fig. 2. One representative Andrews Plot from an HTTP workload as described
in subsection: “HTTP-PHP Workload”. ML seeks the signal shown.

 Correlation matrix plots across all feature time series were
created with the Pandas Python library to highlight positive and
negative correlations in the observations. By focusing on intra-
feature correlation, efficiency can be increased by sampling only
one element from a highly-correlated feature set at runtime.
Example correlation plots are shown in Fig. 3, 4, and 5. Entirely
white cells represent features that did not yield experimental data
during VM observation and thus cannot be correlated. The value
1.0 indicates perfect positive correlation, while -1.0 represents
perfect negative correlation. Since some data are related (i.e.,
received bytes and packets) a degree of correlation is expected.
We anticipated that elements from a highly-correlated feature
pairs would not simultaneously occur in learned rulesets. By
including the classification in the correlation matrix we
determine if any individual feature is overwhelmingly
predictive, implying an existence of a sufficiently viable
univariate over-indicator. No individual feature was highly
correlated to learned classification suggesting validity in our
multivariate supervised ML approach.

A. Initial Features Found to Have Predictive Power

In the following section, Table II summarizes predictive
features from our initial experimentation using 1Hz sampling
across workloads. Marked values show predictive power.

 Our intuition of the HTTP workload was that some
combination of delay and networking features would dominate
the rule set. The results were more nuanced than expected.
Experimentally, rules were comprised of CPU consumption
(CPU), blocked I/O (BIO) and memory writes (WCK and WBK
). The lengthiest rule generated indicates over-constraint in a
narrow range of CPU consumption when blocked I/O and CPU
scheduler delay were high. Simpler rules indicate that blocked
I/O and memory pressure below a certain threshold indicated an
HTTP VM is likely to be nominal.

TABLE II. FEATURES USED IN FINAL DECISION TREE RULES

Kernel Feature HTTP/PHP Web Server SQL Database Video Server (I/O)

CPU • •

DLY •

RCK • •

WCK • • •

RBK •

WBK •

PF3 •

PF4 •

BIO • • •

Fig. 3. Feature Correlation Matrix HTTP Workload.

Fig. 5. Feature Correlation Matrix Video Workload

Fig. 4. Feature Correlation Matrix SQL Workload

 Our assumption for the SQL workload was that the rules
would be generally governed by blocked I/O (BIO) and CPU
properties. Our intuition did not entirely match reality. The rules
were indeed governed by blocked I/O, but memory
characteristics comprised the remainder of the interesting
features. Two resulting rules indicted a machine learned tipping
point for this workload in the WCK property, when in
conjunction with high blocked I/O, causes a classification to
transition from nominal to over-constrained.

 Having no prior experience with our file streaming
workload, we had no intuition. Interestingly, combinations of
CPU consumption (CPU), a specific page fault type (PF3), and
blocked I/O (BIO) make up most of the rules. Page faults may
be related to requesting un-cached content on disk, or requesting
aged-out content. Similarly, processes blocked on I/O seem a
relevant indictor for streaming content workloads.

B. Effect of Observation Variance on Learned Rules

Many of the features sampled are far more variable than

others. Experimentation was necessary to explore the
relationship between feature variability and machine learned
decision tree rules. One method for understanding these
workload traces is to visualize the features sampled as a set of
coordinates in a high-dimensional data space using 1 axis per
variable. This technique is known as Principal Component
Analysis (PCA)3 [19]. Using this approach, a PCA plot
constructs a lower-dimensional projection of the data when
viewed from a particularly advantageous viewpoint highlighting
variance. Each workload trace feature was mapped into the
range [-1, 1] before plotting the PCA (lowest mode) to determine
features with the largest variance. Analysis of PCA feature
magnitude and learned rules indicate feature salience is
unrelated to variance for this domain.

C. Rule Set Accuracy

In addition to generating rulesets, the classifier runtime provides
measures of rule accuracy against training data reserved for
testing at rule generation time [9]. Table III lists the rule set error
and information about the observations used to generate the rule
sets. The column labeled “Tested” indicates the number of data
rows (time steps) used to train the classifier with nominal and
over constrained data. All values are for a 1Hz sampling regime,
and thus runtimes can be inferred for the experiments: ~10, 4,
and 16 minutes respectively for the HTTP, SQL, and VIDEO
workloads respectively. The “Error” column indicates
cumulative false positives and negatives encountered during rule
testing performed by the classifier at rule generation time. The
“Error %” column indicates the percentage of classifications in
error if the rule set had been in effect. Note the low error
percentages with a distinct trend towards false negatives.

3 PCA is also known by other names depending on the field of application including but not limited to: the discrete
Kosambi-Karhunen–Loève transform in signal processing, the Hotelling transform in multivariate quality control, proper
orthogonal decomposition in mechanical engineering, and eigenvalue decomposition in linear algebra.

D. Sensitivity to Network Configuration

Referring again to Table II, we expected more features from
Table I to demonstrate predictive value (e.g., the lack of network
related features from the HTTP case). In effect, the decision tree
rules guided further research. To investigate intra-hypervisor vs.
externally driven workload sensitivity, we ran the HTTP
workload from an off-hypervisor host instead of a co-resident
VM. Results are shown in Table IV. This change yielded
predictive power in both a receipt and transmission feature
(RXB and TXP) demonstrating predictive features and rulesets
are sensitive to network configuration at training time. Note the
indication of PF3 as predictive for this variant while it was not
selected in the intra-hypervisor experimental HTTP rule set.
Error rates were small in both networking experiments and
generally consistent. More expected features were present in the
off-platform client scenario.

 TABLE IV. EXTERNAL VS. INTERNAL NETWORKING EQUIPMENT

E. Sensitivity to Observation Sampling Frequency Variation

Classifiers were trained with subsampled data (3, 5, 10, and 60
second windows to determine the effects of feature sampling
frequency regime on rules. Results are shown in Table V. Note
that no classifier generated a viable rule set at the 1 Minute
sampling interval, wherein default classifications were always
assumed. Thus, those columns were omitted entirely, as was the
case in the SQL workload sampled at 1/10 Hz. There are two
potential explanations. The first assumes that the data series is
too sparse, and through sufficient experimental replication one
could build a viable classifier from a longer training series. A
second explanation is that the fundamental patterns in the data
are on time scales much faster than once per minute and that
transient events indicative of over-constraint get lost in such
regimes. Varying observation sampling frequencies yields a
quantifiable impact on rulesets (including accuracy against
training tests as well as feature predictive power). Decreasing
sampling rates yield rule sets based on fewer features. The most
commonly predictive feature was blocked I/O. Since each
workload had an I/O component this is not entirely surprising.

HTTP
Feature

1HZ HTTP INTERNAL
NETWORKING

1HZ HTTP EXTERNAL
NETWORKING

CPU • •

UT •

DLY • •

RCK • •

WCK • •

WBK • •

RXB •

TXP •

PF3 •

BIO • •

ERROR % 1.1%
(6/547)

1.4%
(4/287)

TABLE III. DECISION TREE ACCURACY

Workload Tested Errors Error

%
False

Positive
Count

False
Negative

Count
Precision Recall

HTTP 547 6 1.1% 1 5 0.998 0.991

SQL 260 2 0.8% 1 1 0.996 0.996

VIDEO 1009 24 2.4% 0 24 1.000 0.976

F. Rule Set Portability

To test classifier portability, we trained on a small system4, then
moved the VMs and trained classifiers to a larger system5 prior
to re-running the workload. Large host observations were used
with the classifier generated on the small host using the same
1Hz sampling regime. Relocated classifiers worked across hosts
in each of our workloads, due in part to the design of the
classifier input data. Training data features are not expressed as
exposed natively but rather converted to rates per sampling
interval. Other features were expressed as a percentage of
absolute physical capacity. This allows training and
classification with host-abstracted data for more generalizable
results. However, we assume a practical limit to generalizability
across hardware (e.g., solid state disk vs. rotational media).
While experimentation across a broad variety of hardware is
required to definitively explore these limits, IaaS often leverages
generally homogeneous hardware [20]. Our results indicate
viability in practice when using comparable hardware.
Horizontal scaling (cloned VMs) should work well, with each
VM autonomously and independently managed for overload
wherein the triggered remedial action may involve orchestration
software for elasticity or workload balancer adjustment.
Portability can be improved as outlined in our previous work
[21] to compile rules into embeddable, shared objects on a per-
VM basis as specified in a VM contract [22].

 IV. CONCLUSIONS AND FUTURE WORK

We observed low error rates in automated detection of over-
constrained VM’s using decision tree classifiers trained on
hypervisor-exposed features, and showed ruleset portability. We
showed the impact of temporal regime on classifier rules. In
summary, the inapplicability of 1 minute sampling intervals and
negligible overhead at 1Hz sampling imply that scale-out to
hundreds of VMs should be reasonable for triggering timely
remediation. We highlighted the importance of constructing
realistic training with respect to VM networking. By analysis of
feature correlation matrices and rulesets, we note low feature
cross correlation (below 0.4). While we demonstrated that no

4 The small system was a 4-core i5 processor at 2.67 GHz with 3GB RAM.

individual feature has high direct correlation with over-
constraint (suggesting potentially invalid assumptions in related
work), a focused selection on a workload-specific combination
of features can be very predictive. We note that machine learned
predictive feature sets were relatively small in comparison to the
full list hypothesized to be relevant. Rulesets were generally
short (6-9 rules), with each consisting of at most 5 expressions.
Lastly, our approach is not tied to VMs since our data are derived
from /proc entries and may apply to other workloads
encapsulated as individual processes, thus extension of our work
along those lines may be related in spirit to other research [23].

REFERENCES
[1] A. Beloglazov et al., “Energy-aware resource allocation heuristics for

efficient management of data centers for cloud computing” in Future
Generation Comp Systems 28(5): 755–768. 2012.

[2] R.N. Calheiros et al., “Cloudsim: A toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provisioning
algorithms” in Software: Practice & Experience 41(1): 23–50. 2012

[3] T.C. Ferreto et al., “Server consolidation with migration control for
virtualized data centers” in Future Generation Comp Syst 27(8): 1027–
1034. Elsevier B.V., Amsterdam.

[4] Z. Gong, X. Gu. “Pac: Pattern-driven application consolidation for
efficient cloud computing” in Proc 2010 IEEE Int. Symp. on Modeling,
Analysis and Sim. of Computer and Telecom. Sys., 24–33.. IEEE
Computer Society, Washington.

[5] F. Farahnakia et al., “Lircup: Linear regression based CPU usage
prediction algorithm for live migration of virtual machines in data
centers” in Proc. of the 2013 39th Euromicro Conf. on Software Eng &
Advanced Applications, 357–364. IEEE. Computer Society, WA.

[6] S. Khatua et al., “Prediction-based instant resource provisioning for cloud
applications” in Proc. of the 2014 IEEE/ACM 7th Int. Conf. on Utility and
Cloud Computing, IEEE Computer Society, Washington. pp 597–602.

[7] D. Minarolli et al. “Tackling uncertainty in long-term predictions for host
overload and underload detection in cloud computing” in Journal of
Cloud Comp Cloud Comp (2017) 6: 4.

[8] D. Pelleg et al., “Vigilant: out-of-band detection of failures in virtual
machines” in SIGOPS Operating. Systems. Review. 42, 1 (Jan 2008)

[9] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, 1993.

[10] R. Duda et al., Pattern Classification. Wiley. ISBN: 978-0-471-05669-0
[11] F. Bellard. Qemu, a fast and portable dynamic translator in USENIX 2005

Annual Technical Conf., FREENIX Track, pages 41–46,.
[12] A. Kivity. KVM: the Linux Virtual Machine Monitor in OLS ’07: The

2007 Ottawa Linux Symp., pages 225–230, July 2007.
[13] Apache HTTP Server Project. Available: http://httpd.apache.org/
[14] PHP website. Accessed January 2017 at http://www.php.net/.
[15] Apache HTTP Server Benchmarking Tool User Manual- Available:

http://httpd.apache.org/docs/2.4/en/programs/ab.html
[16] MySQL-SLAP Reference from the MySQL Database Project. Available:

https://dev.mysql.com/doc/refman/8.0/en/mysqlslap.html
[17] T. J. Killian, "Processes as Files," in USENIX Summer Conf. Proc., Salt

Lake City, UT, USA (June 1984).
[18] C. García-Osorio, and C. Fyfe. "Visualization of High-Dimensional Data

via Orthogonal Curves" in Journal of Universal Computer Science. 11
(11): 1806–1819. 2005

[19] K. Pearson, "On Lines and Planes of Closest Fit to Systems of Points in
Space" in Philosophical Magazine. 2 (11): 559–572.

[20] L. A. Barroso and U. Hoelzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines (1st ed.).
Morgan and Claypool Publishers. 2009. Available:
http://bnrg.eecs.berkeley.edu/~randy/Courses/CS294.F09/wharehousesiz
edcomputers.pdf

[21] E. Dow, and T. Penderghest. "Transplanting Binary Decision Trees" in
Journal of Computer Sciences and Applications 3.3 (2015): 61-66.

[22] J. Matthews et.al., “Virtual machine contracts for datacenter and cloud
computing environments” in Proc. of the 1st Workshop on Automated
Control for Datacenters and Clouds, 2009, pp. 25-30

[23] S. Kundu et al., "Modeling virtualized applications using machine
learning techniques" in ACM SIGPLAN Notices. Vol. 47. No. 7. ACM.
2012

5 The large system was a 24-core Xeon ES02540 at 2.5GHz with 94GB RAM

TABLE V. CLASISFIER SENSITIVITY TO VARYING THE FEATURE
COLLECTION INTERVAL

Feature HTTP SQL Video Streaming

Freq.
(secs) 1 3 5 10 1 3 5 1 3 5 10

CPU • • •

DLY •

RCK • • • •

WCK • • • • • •

RBK • • •

WBK • • •

RXB •

RXP • •

TXP • •

PF3 • •

PF4 •

BIO • • • • • • • •

Error
% 1.1 6 1.8 1.8 0.8 0 1.9 2.41 3.3 2.0 2.0

Error
Count 6 11 1 2 2 0 1 24 11 4 2

Tests 547 183 55 110 260 87 53 1009 337 292 101

