
Abstract—This paper evaluates a mechanism for applying 
machine learning (ML) to identify over-constrained IaaS virtual 
machines (VMs). Herein, over-constrained VMs are defined as 
those who are not given sufficient system resources to meet their 
workload specific objective functions. To validate our approach, a 
variety of workload-specific benchmarks inspired by common 
Infrastructure-as-a-Service (IaaS) cloud workloads were used. 
Workloads were run while regularly sampling VM resource 
consumption features exposed by the hypervisor. Datasets were 
curated into nominal or over-constrained and used to train ML 
classifiers to determine VM over-constraint rules based on one-
time workload analysis. Rules learned on one host are transferred 
with the VM to other host environments to determine portability. 
Key contributions of this work include: demonstrating which VM 
resource consumption metrics (features) prove most relevant to 
learned decision trees in this context, and a technique required to 
generalize this approach across hosts while limiting required up 
front training expenditure to a single VM and host. Other 
contributions include a rigorous explanation of the differences in 
learned rulesets as a function of feature sampling rates, and an 
analysis of the differences in learned rulesets as a function of 
workload variation. Feature correlation matrices and their 
corresponding generated rule sets demonstrate individual features 
comprising rule sets tend to show low cross-correlation (below 0.4) 
while no individual feature shows high direct correlation with 
classification. Our system achieves workload-specific error 
percentages below 2.4% with a mean error across workloads of 
1.43% (and strong false negative bias) for a variety of synthetic, 
representative, cloud workloads tested.  

Keywords—virtual machines; cloud-computing; IaaS 
management; decision trees; support vector machines; binary 
classification; cloud provisioning; resource allocation. 
 

I. INTRODUCTION 

 
Generally, existing systems require the VM operator to 

install a software agent in the VM that can be used to gather 
information and drive a monitor-analyze-remediate 
management loop for VM resource allocation decisions. Out-of-
band monitoring, or agentless monitoring, is simpler to install 
and administer (centralized on the hypervisor not the VMs) and 
does not restrict the VM owner by imposing an agent or any 
other requirements into their VM. The lack of interference or 
imposed requirements on IaaS cloud VMs cannot be 
understated, as this cloud type caters to arbitrary OS images. 

While out-of-band agents suffer from reduced visibility into 
the behavior of the system being monitored, the benefits of 
black-box monitoring for VM management in IaaS makes it a 

compelling research prospect. The long running (indefinite 
execution) nature of VM processes indicate that the overhead 
associated with the measurement and detection needed for load 
balancing may be well worth the cost in contrast to short lived 
process management where black box techniques are typically 
not used. This work aims to improve existing systems through 
the more challenging, and more applicable to the IaaS context, 
black-box monitoring approach in an host-independent context. 

 

II. RELATED WORK 
 

A variety of prior work seeks to determine over-
constraint/overload detection in real time, or by anticipating 
future workload demands. However, these previous efforts 
select, a priori, the feature of interest to trigger their remediation 
on based on intuition. They most often use CPU consumption 
(or another univariate trigger). Beyond static thresholding, some 
recent work uses heuristics based on statistical analysis of 
historical VM resource consumption [1,2], effectively using 
adaptive thresholds based on statistical properties [3]. One 
alternative technique uses pattern-driven application 
consolidation by examining patterns of resource usage 
(signatures in their work), and applying dynamic time warping 
and the fast Fourier transform to seek a match between available 
host capacity and individual VM resource demand signatures 
[4]. Though that effort was principally aimed at periodic global 
consolidation in environments with high workload periodicity, 
instantaneous overload/over-consolidation strategies were 
discussed, relying on a single predictor exceeding a static 
threshold. In contrast to these efforts, we use a data driven 
approach to determine a multivariate over-constraint indicator.  

Other recent works focus on the shift from immediate 
overload detection to anticipatory systems by applying a variety 
of techniques such as: linear regression [5] for short term CPU 
prediction, auto-regressive integrated moving averages [6], and 
more sophisticated schemes that apply longer term prediction 
augmented with uncertainty estimation [7] (though that work 
also defines a key concept of SLA violation in terms of CPU 
consumption of the VM compared to allocated CPU share for 
that VM). Our work differs through use ML to define the salient 
characteristics indicating over-constraint. Our technique can 
employ any of these forecasting methods to move into an 
anticipatory modality, and thus may enhance these systems by 
projecting recent feature observations into the future (using the 
preferred forecasting technique) and inputting those projections 
into the machine learned, multivariate, over constraint classifier. 
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 Our work is most strongly inspired by Vigilant, a system 
based on out-of-band monitoring. Vigilant determined the health 
and status of a VM based solely on data observations that were 
accessible from the hypervisor context [8]. Vigilant specifically 
targeted the detection of extremely high CPU utilization in 
kernel space. The experimental results from Vigilant show that 
certain types of problem conditions in VMs could be detected 
out-of-band with high accuracy while avoiding the pitfalls 
associated with in-band monitoring. Like Vigilant, our system 
monitors the hypervisor for VM utilization information and uses 
a decision tree classifier ML method [9] to analyze the readings 
at run time and detect problems in situ. Though Vigilant was the 
first system to combine the ease of out-of-band data collection 
with ML to improve VM systems management, their work was 
focused on detecting a limited set of faults (e.g., halt on error 
conditions). Our own work provides a generalization of their 
approach to autonomously detecting VM over-consolidation. 
Those curious about the details of the virtualization differences 
in Vigilant and our own work should note their work was based 
on the  QEMU emulator [11] with each emulated machine 
running a different type of workload (web service, mail service, 
etc.). Since QEMU underpins the operation of KVM virtual 
machines [12] it follows then that their preliminary results 
should guide our investigation using KVM. 

 

III. RESEARCH QUESTIONS AND METHODOLOGY 

 
Motivated by interest into autonomous over-constraint detection 
for VMs, this work asks the following research questions: 
 
1. Which features or resource metrics are most useful in automatically 
identifying over-constraint in IaaS cloud computing environments? 

2. How do the rule sets of learned classifiers vary across common IaaS VM 
workload types? 

3. How portable are learned classifiers? Specifically, can they be implemented 
such that an unmodified classifier can travel with the virtual machine to other 
hosts while retaining applicability?  

4. What are the differences in learned classifiers as a function of sampling 
frequency? Can one determine a lower bound on practical sampling intervals? 

Experimentation was done on a KVM hypervisor using a VM 
created from scratch and configured with a variety of 
middleware and workloads to be executed while under 
observation from our black-box VM monitoring software 
(running on the hypervisor). Both the hypervisor OS and VM 
were Ubuntu version 16.04 (the current release at the time of 
experimentation). The workloads installed on the VM are 
enumerated in section A: Workload Overview while data 
collection methodology is explained in section B: Experimental 
Data Recording. Each workload was run (while data was 
collected from within the VM to annotate over-constraint 
conditions) concurrently with externally visible data collection 
at the hypervisor. Workload-aware data (for ground truth) 
enables supervised ML on the black box data. 

A. Workload Overview 
A series of representative, synthetic, surrogate IaaS 

workloads were identified as a basis for evaluation spanning 
three major categories:  

1) HTTP-PHP Workload: Workloads are executed against 
our HTTP [13] and PHP [14] installation by using the 

                                                
1 To test our HTTP-based workload we performed a nominal installation of the Apache web server using the “apt-get install 
apache2” command. Once a minor change was made to the default configuration of Apache to silence a configuration-file 
related warning, we proceeded to install PHP to create more realistic web content to serve based on the observation that web 
pages are not simply static HTML. Once installed and configured, a simple PHP page was created to exercises the PHP runtime. 

 

apachebench benchmark utility1 [15]. The individual runs were 
configured to flag unconstrained VM situations when 90% of 
page responses were received in less than 3 seconds. When 
more than 10 percent of the page responses take more than 10 
seconds, we consider the HTTP VM server to be over-
constrained. This threshold was based on the observation that 
web pages that fail to load instantly are considered too slow for 
production. Consumers invariably become frustrated with 
latencies, especially on mobile devices. Individual page 
responses taking longer than 5 seconds to return are tallied as 
errors. The number of concurrent requests were scaled 
iteratively from 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 
400, 500, and 1000. Each iteration is run for 60 seconds before 
the next iteration to allow a gradual workload ramp up. The 
workload logs the start and end time of each iteration as well as 
when the over-constraint event. 

2) Database Workload: To execute a workload against the 
database instance, we installed the mysqlslap2 [16]. Overload 
was defined by any individual slap invocation with an average 
query latency exceeding 5 seconds. The workload similarly logs 
start, end, and over-constraint event timing.  

3) I/O Dominated Workloads (Simulated File Serving): To 
simulate file I/O oriented workloads performed in the cloud the 
filebench workload engine was selected and configured to 
emulate the file access patterns of a streaming video server. 
This configuration simulated new content creation (uploads) 
and aging out of older content in such a way as to simulate 
services like YouTube. The workload has 2 components, one 
which creates new content and one serving the content. The 
workload distinguishes between actively served videos and 
aged content (paged out to disk). We manipulated the number 
of threads representing streaming users over the range of [40-
60], incrementing by one additional thread per iteration until the 
number of reported I/O operations per second fell below a 
configured threshold (300). Each iteration ran for at least 60 
seconds, with videos replaced once every 10 seconds. 
 

B. Experimental Data Recording 
To record a pure data set, each VM was exercised in isolation 

on an idle KVM host. Our black-box monitoring software was 
started early to capture the full VM boot up process as well as a 
training workload interval and an idle interval. Since patterns of 
resource consumption at boot-up are often drastically different 
than operational workloads, VM restarts under monitoring 
might otherwise appear to show atypical workload profiles from 
out-of-band. The VMs reached a quiescent state of activity prior 
to starting workloads, and were run until over-constraint was 
triggered. Values logged during black-box hypervisor data 
collection are obtained principally from the /proc virtual file 
system [17] on the hypervisor.  

Samples were obtained at 1Hz for each of the features 
monitored and are listed with explanation in Table I. Fig. 1 
illustrates a plot that is representative of the fundamental data 
collection for each of the experiments performed. The figure, 
representative of the data collected from all experiments, was 
taken from a single HTTP run. The abscissa shows time in 
seconds from experiment start, covering approximately 10 
minutes in elapsed time. Each stacked subplot shows the time 

2
 A freely available database linked from the MySQL documentation page (dev.mysql.com/doc/index-other.html) was installed 

to provide reasonable test data for the MySQL workload. The database is described as "employee data (large dataset, includes 
data and test/verification suite).”  Since one table had almost half a million rows of populated data, the design criteria for a 
sufficiently large dataset was satisfied.  

 



series of observations from a single feature.  Only features with 
nonzero series are shown (some features are not shown where 
no data was collected). Several seemingly relevant features 
hypothesized to be useful in Table 1 produced no usable 
observations in our experiments. Those features showing 
predictive power are marked in bold. Upon investigation, many 
parameters are not relevant to KVM VMs (though would likely 
be relevant in other hypervisors). Several constituent feature 
time series show high correlation but are in fact distinct when 
viewed at high resolution.  The left most 1/6th of Fig. 1 
corresponds to VM boot-up. Series labels in inset boxes 
correspond to the entries in Table I. Post-processing of 
instrumented workload logs created during the collection of this 
data allowed annotation as nominal or over-constrained, forming 
the basis of our supervised binary classification scheme.  

 

IV. EXPERIMENTAL RESULTS 
 

This section provides an analysis of our experimental results. 
First, we present an overview of the multivariate data we 
collected across workloads and our analysis approach. Second, 
this section describes the features that were found to initially 
have predictive power from our set of reasonable guess features 
in Table II. Following that, we present an investigation into the 
effect of feature observation variance on learned rules, 
quantifying rule set accuracy. This section concludes with an 
analysis of networking setup and observation sampling regime 
sensitivity as well as analysis of learned rule set portability. 

 For each workload run, feature-specific data was analyzed 
using a series of automated plots and analysis for manual 
inspection. This analysis included time series plots of each 
feature to observe general trends in the series as well as ensuring 
each observation was recorded correctly.  Box and whisker plots 
were created for each feature to characterize the variance of 
feature observations. Histograms of observed features were 
created as well as a scatterplot of each feature against the 
determined classification. The histogram plots of observed 
values were performed to determine what, if any, type of 
distribution the feature corresponds to. Many ML models 
assume a Gaussian distribution, and surprisingly none of our 
observations corresponded to a Gaussian distribution. In the 
scatterplot analysis of each observation, the corresponding 
determined classification was encoded as a 1 or 0, with 1 
meaning over-constrained or under-performing the experimental 
threshold for successful virtual machine operation response, and 
0 meaning nominal or well-performing VM response. 

 

 
TABLE I. OBSERVED KERNEL FEATURES 

Feature Description 

CPU Amount of time that this process was scheduled in both kernel and 
user-blospace time as a percentage of all time elapsed. From 
/proc/[pid]/stat 

UT Amount of time that this process has been scheduled in user mode, 
measured in clock ticks. This includes guest time, guest_time (time 
spent running a virtual CPU, see below), so that applications that are 
not aware of the guest time field do not lose that time from their 
calculations. “Utime” value from /proc/[pid]/stat 

ST Amount of time that this process has been scheduled in kernel mode, 
measured in clock ticks. “Stime” value from /proc/[pid]/stat 

CUT Amount of time that this process's waited-for children have been 
scheduled in user mode, measured in clock ticks. This includes guest 
time, cguest_time (time spent running a virtual CPU, see below). 
“Cu_time” value from /proc/[pid]/stat 

CST Amount of time a process's waited-for children have been scheduled in 
kernel mode, in clock ticks. “Cs_time” value from /proc/[pid]/stat 

GT Time spent running a virtual CPU for a guest operating system, in 
clock ticks.  “Guest_time” value from /proc/[pid]/stat   

CGT Guest time (GT) of the process's children, measured in clock ticks. 
“Cguest_time”  value. from /proc/[pid]/stat   

DLY Obtained from /proc/pid/schedstat, indicates the time spent waiting on 
a kernel run queue but not executing.   

RCK The number of bytes which this task has caused to be read from 
storage. This is simply the sum of bytes which this process passed to 
read() and pread(). It includes things like tty IO and it is unaffected by 
whether actual physical disk IO was required (the read might have 
been satisfied from page cache). From /proc/[pid]/io   

WCK The number of bytes which this task has caused, or shall cause to be 
written to disk. Similar caveats apply here as with RCK. From 
/proc/[pid]/io   

RBK The number of bytes which this process fetched from the storage layer. 
Done at the submit_bio() level.  From /proc/[pid]/io   

WBK Number of bytes which this process caused to be sent to the storage 
layer. This is done at page-dirtying time. From /proc/[pid]/io   

RXB Received bytes from virDomainInterfaceStats struct in libvirt 

RXP Received packets from virDomainInterfaceStats struct in libvirt 

RXE Receiver side errors from virDomainInterfaceStats struct in libvirt 

RXD Receiver side dropped packets from virDomainInterfaceStats struct in 
libvirt 

TXB Transmitted bytes from virDomainInterfaceStats struct in libvirt 

TXP Transmitted packets from virDomainInterfaceStats struct in libvirt 

TXE Transmission side errors from virDomainInterfaceStats struct in libvirt 

TXD Transmission side dropped packets from virDomainInterfaceStats 
struct in libvirt 

PF1 Count of minor faults the process has made which have not required 
loading a memory page from disk. “Minflt” value from /proc/[pid]/stat. 

PF2 The number of minor faults that the process's waited-for children have 
made. “Cminflt” value. 

PF3 The number of major faults the process has made which have required 
loading a memory page from disk.  “Majflt” value from 
/proc/[pid]/stat. 

PF4 The number of minor faults that the process's waited-for children have 
made. “Cmajflt” value from /proc/[pid]/stat. 

BIO Aggregated block I/O delays, measured in clock ticks, expressed as a 
rate per time. “Delayacct_blkio_ticks” value from /proc/[pid]/stat. 

 
Fig. 1. An example experiment time series set showing observed feature series 
shown to illustrate high-level feature series similarity across some feature 
subplots. Such subplots, in higher resolution than can be reproduced here for 
publication length limitations,  were used to validate our collection framework.  



      In addition to univariate analysis of features, an 
examination of the multivariate data set (across all features) 
from each experiment was performed.  A representative 
example Andrews plot [18] for the HTTP workload is shown in 
Fig. 2. A type of signal, shown in teal (darker) distinguishes 
over-constrained data values against background of gold 
(lighter) nominal values.  This signal is what our ML approach 
attempts to discern from the feature vector observations. Since 
some signal seems apparent, we next sought to answer if any 
individual variable had overwhelming predictive power or if  
features showed high cross-correlation. Each attribute of an 
observational data set row is represented by a point on the line, 
like a line chart, but the way data is translated into a plot is 
substantially different. Each column from the data set is 
normalized independently and smoothed. 

  
Fig. 2. One representative Andrews Plot from an HTTP workload as described 
in subsection: “HTTP-PHP Workload”.  ML seeks the signal shown.  

 

 Correlation matrix plots across all feature time series were 
created with the Pandas Python library to highlight positive and 
negative correlations in the observations. By focusing on intra-
feature correlation, efficiency can be increased by sampling only 
one element from a highly-correlated feature set at runtime. 
Example correlation plots are shown in Fig. 3, 4, and 5. Entirely 
white cells represent features that did not yield experimental data 
during VM observation and thus cannot be correlated. The value 
1.0 indicates perfect positive correlation, while -1.0 represents 
perfect negative correlation. Since some data are related (i.e., 
received bytes and packets) a degree of correlation is expected. 
We anticipated that elements from a highly-correlated feature 
pairs would not simultaneously occur in learned rulesets. By 
including the classification in the correlation matrix we 
determine if any individual feature is overwhelmingly 
predictive, implying an existence of a sufficiently viable 
univariate over-indicator. No individual feature was highly 
correlated to learned classification suggesting validity in our 
multivariate supervised ML approach. 

 

A. Initial Features Found to Have Predictive Power 
 

In the following section, Table II summarizes predictive 
features from our initial experimentation using 1Hz sampling 
across workloads. Marked values show predictive power.  

 Our intuition of the HTTP workload was that some 
combination of delay and networking features would dominate 
the rule set. The results were more nuanced than expected. 
Experimentally, rules were comprised of CPU consumption 
(CPU), blocked I/O (BIO) and memory writes (WCK and WBK 
). The lengthiest rule generated indicates over-constraint in a 
narrow range of CPU consumption when blocked I/O and CPU 
scheduler delay were high.  Simpler rules indicate that blocked 
I/O and memory pressure below a certain threshold indicated an 
HTTP VM is likely to be nominal.   

 
 

TABLE II.     FEATURES USED IN FINAL DECISION TREE RULES 
 

 
 
 
 

Kernel Feature HTTP/PHP Web Server SQL Database Video Server (I/O) 

CPU •  • 

DLY •   

RCK • •  

WCK • • • 

RBK   • 

WBK •   

PF3   • 

PF4   • 

BIO • • • 

 
Fig. 3. Feature Correlation Matrix HTTP Workload.  

 
 
Fig. 5. Feature Correlation Matrix Video Workload 

 
Fig. 4. Feature Correlation Matrix SQL Workload 



 Our assumption for the SQL workload was that the rules 
would be generally governed by blocked I/O (BIO) and CPU 
properties. Our intuition did not entirely match reality. The rules 
were indeed governed by blocked I/O, but memory 
characteristics comprised the remainder of the interesting 
features. Two resulting rules indicted a machine learned tipping 
point for this workload in the WCK property, when in 
conjunction with high blocked I/O, causes a classification to 
transition from nominal to over-constrained. 

 Having no prior experience with our file streaming 
workload, we had no intuition. Interestingly, combinations of 
CPU consumption (CPU), a specific page fault type (PF3), and 
blocked I/O (BIO) make up most of the rules. Page faults may 
be related to requesting un-cached content on disk, or requesting 
aged-out content. Similarly, processes blocked on I/O seem a 
relevant indictor for streaming content workloads.  

 

B. Effect of Observation Variance on Learned Rules 
  
Many of the features sampled are far more variable than 

others.  Experimentation was necessary to explore the 
relationship between feature variability and machine learned 
decision tree rules. One method for understanding these 
workload traces is to visualize the features sampled as a set of 
coordinates in a high-dimensional data space using 1 axis per 
variable. This technique is known as Principal Component 
Analysis (PCA)3 [19]. Using this approach, a PCA plot 
constructs a lower-dimensional projection of the data when 
viewed from a particularly advantageous viewpoint highlighting 
variance. Each workload trace feature was mapped into the 
range [-1, 1] before plotting the PCA (lowest mode) to determine 
features with the largest variance. Analysis of PCA feature 
magnitude and learned rules indicate feature salience is 
unrelated to variance for this domain. 

 

C. Rule Set Accuracy 
 

In addition to generating rulesets, the classifier runtime provides 
measures of rule accuracy against training data reserved for 
testing at rule generation time [9]. Table III lists the rule set error 
and information about the observations used to generate the rule 
sets. The column labeled “Tested” indicates the number of data 
rows (time steps) used to train the classifier with nominal and 
over constrained data.  All values are for a 1Hz sampling regime, 
and thus runtimes can be inferred for the experiments: ~10, 4, 
and 16 minutes respectively for the HTTP, SQL, and VIDEO 
workloads respectively. The “Error” column indicates 
cumulative false positives and negatives encountered during rule 
testing performed by the classifier at rule generation time. The 
“Error %” column indicates the percentage of classifications in 
error if the rule set had been in effect. Note the low error 
percentages with a distinct trend towards false negatives. 

                                                
3 PCA is also known by other names depending on the field of application including but not limited to: the discrete 
Kosambi-Karhunen–Loève transform in signal processing, the Hotelling transform in multivariate quality control, proper 
orthogonal decomposition in mechanical engineering, and eigenvalue decomposition in linear algebra. 

 

D. Sensitivity to Network Configuration 
 
Referring again to Table II, we expected more features from 
Table I to demonstrate predictive value (e.g., the lack of network 
related features from the HTTP case). In effect, the decision tree 
rules guided further research. To investigate intra-hypervisor vs. 
externally driven workload sensitivity, we ran the HTTP 
workload from an off-hypervisor host instead of a co-resident 
VM. Results are shown in Table IV. This change yielded 
predictive power in both a receipt and transmission feature 
(RXB and TXP) demonstrating predictive features and rulesets 
are sensitive to network configuration at training time. Note the 
indication of PF3 as predictive for this variant while it was not 
selected in the intra-hypervisor experimental HTTP rule set. 
Error rates were small in both networking experiments and 
generally consistent. More expected features were present in the 
off-platform client scenario. 

  
    TABLE IV. EXTERNAL VS. INTERNAL NETWORKING EQUIPMENT 

 

E.  Sensitivity to Observation Sampling Frequency Variation 
 

Classifiers were trained with subsampled data (3, 5, 10, and 60 
second windows to determine the effects of feature sampling 
frequency regime on rules.  Results are shown in Table V. Note 
that no classifier generated a viable rule set at the 1 Minute 
sampling interval, wherein default classifications were always 
assumed.  Thus, those columns were omitted entirely, as was the 
case in the SQL workload sampled at 1/10 Hz. There are two 
potential explanations. The first assumes that the data series is 
too sparse, and through sufficient experimental replication one 
could build a viable classifier from a longer training series. A 
second explanation is that the fundamental patterns in the data 
are on time scales much faster than once per minute and that 
transient events indicative of over-constraint get lost in such 
regimes. Varying observation sampling frequencies yields a 
quantifiable impact on rulesets (including accuracy against 
training tests as well as feature predictive power). Decreasing 
sampling rates yield rule sets based on fewer features. The most 
commonly predictive feature was blocked I/O. Since each 
workload had an I/O component this is not entirely surprising.   

 

 

HTTP 
Feature 

1HZ HTTP INTERNAL 
NETWORKING 

1HZ HTTP EXTERNAL 
NETWORKING 

CPU • • 

UT  • 

DLY • • 

RCK • • 

WCK • • 

WBK • • 

RXB  • 

TXP  • 

PF3  • 

BIO • • 

ERROR % 1.1% 
(6/547) 

1.4% 
(4/287) 

   

TABLE III. DECISION TREE ACCURACY 
 

    
Workload Tested Errors Error 

% 
False 

Positive 
Count 

False 
Negative 

Count 
Precision Recall 

HTTP 547 6 1.1% 1 5 0.998 0.991 

SQL 260 2 0.8% 1 1 0.996 0.996 

VIDEO 1009 24 2.4% 0 24 1.000 0.976 

  



 

F. Rule Set Portability  
 

To test classifier portability, we trained on  a small system4, then 
moved the VMs and trained classifiers to a larger system5 prior 
to re-running the workload. Large host observations were used 
with the classifier generated on the small host using the same 
1Hz sampling regime. Relocated classifiers worked across hosts 
in each of our workloads, due in part to the design of the 
classifier input data. Training data features are not expressed as 
exposed natively but rather converted to rates per sampling 
interval. Other features were expressed as a percentage of 
absolute physical capacity. This allows training and 
classification with host-abstracted data for  more generalizable 
results. However, we assume a practical limit to generalizability 
across hardware (e.g., solid state disk vs. rotational media). 
While experimentation across a broad variety of hardware is 
required to definitively explore these limits, IaaS often leverages 
generally homogeneous hardware [20]. Our results indicate 
viability in practice when using comparable hardware. 
Horizontal scaling (cloned VMs) should work well, with each 
VM autonomously and independently managed for overload 
wherein the triggered remedial action may involve orchestration 
software for elasticity or workload balancer adjustment. 
Portability can be improved as outlined in our previous work 
[21] to compile rules into embeddable, shared objects on a per-
VM basis as specified in a VM contract [22]. 

 

 IV. CONCLUSIONS AND FUTURE WORK 
 

We observed low error rates in automated detection of over-
constrained VM’s using decision tree classifiers trained on 
hypervisor-exposed features, and showed ruleset portability. We 
showed the impact of temporal regime on classifier rules. In 
summary, the inapplicability of 1 minute sampling intervals and 
negligible overhead at 1Hz sampling imply that scale-out to 
hundreds of VMs should be reasonable for triggering timely 
remediation. We highlighted the importance of constructing 
realistic training with respect to VM networking. By analysis of 
feature correlation matrices and rulesets, we note low feature 
cross correlation (below 0.4). While we demonstrated that no 

                                                
4  The small system was a 4-core i5 processor at 2.67 GHz with 3GB RAM. 

individual feature has high direct correlation with over-
constraint (suggesting potentially invalid assumptions in related 
work), a focused selection on a workload-specific combination 
of features can be very predictive. We note that machine learned 
predictive feature sets were relatively small in comparison to the 
full list hypothesized to be relevant. Rulesets were generally 
short (6-9 rules), with each consisting of at most 5 expressions. 
Lastly, our approach is not tied to VMs since our data are derived 
from /proc entries and may apply to other workloads 
encapsulated as individual processes, thus extension of our work 
along those lines may be related in spirit to other research [23].  
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TABLE V.  CLASISFIER SENSITIVITY TO VARYING THE FEATURE 
COLLECTION INTERVAL 

Feature HTTP  SQL  Video Streaming 

Freq.  
(secs) 1 3 5 10 1 3 5 1 3 5 10 

CPU •       •  •  

DLY •           

RCK •    • • •     

WCK • • • • •   •    

RBK    •    • •   

WBK • • •         

RXB         •   

RXP      •    •  

TXP   •        • 

PF3   •     •    

PF4        •    

BIO •    • • • • • • • 

Error 
% 1.1 6 1.8 1.8 0.8 0 1.9 2.41 3.3 2.0 2.0 

Error 
Count 6 11 1 2 2 0 1 24 11 4 2 

Tests 547 183 55 110 260 87 53 1009 337 292 101 

 


