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ABSTRACT

Ecological forecasts are used to inform decisions that can have

significant impacts on the lives of individuals and on the health

of ecosystems. These forecasts, or models, embody the ethics of

their creators as well as many seemingly arbitrary implementation

choices made along the way. They can contain implementation

errors as well as reflect patterns of bias learned when ingesting

datasets derived from past biased decision making. Principles and

frameworks for algorithmic accountability allow a wide range of

stakeholders to place the results of models and software systems

into context. We demonstrate how the combination of algorithmic

accountability frameworks and domain-specific codes of ethics help

answer calls to uphold fairness and human values, specifically in

domains that utilize machine learning algorithms. This helps avoid

many of the unintended consequences that can result from deploy-

ing łblack boxž systems to solve complex problems. In this paper,

we discuss our experience applying algorithmic accountability prin-

ciples and frameworks to ecosystem forecasting, focusing on a case

study forecasting shellfish toxicity in the Gulf of Maine. We adapt

existing frameworks such as Datasheets for Datasets and Model

Cards for Model Reporting from their original focus on personally

identifiable private data to include public datasets, such as those

often used in ecosystem forecasting applications, to audit the case

study. We show how high level algorithmic accountability frame-

works and domain level codes of ethics compliment each other,

incentivizing more transparency, accountability, and fairness in

automated decision-making systems.
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1 INTRODUCTION

Algorithms are increasingly replacing human judgement in many

important decision-making processes [34]. Algorithms influence

personal decision making by suggesting where to eat, where to live,

and who to date. Algorithms also control institutional decisions

such as sorting resumes, determining lines of credit and interest

rates, analyzing loan applications, determining prison sentencing,

and sorting news feeds [35]. One consequence is a shifting of de-

cisions away from domain experts and towards the on-the-spot

choices of programmers or the output of machine learning algo-

rithms that often absorb bias from patterns of past decisions [30].

Technologists who may not be experts in the domains of journal-

ism, criminal justice, human resources, social science, or natural

resource management are producing software that can be used to

make critical decisions in these areas. Increasingly, decisions are

made with a misconception that software-based decisions can be

trusted to be objective and unbiased, leading to "rubber stamping"

and a lack of explanation, accountability, or transparency into the

how and why needed to put software results into context [41].

This increasing reliance on automated decision-making systems

can have unintended consequences including development of un-

fair, or biased algorithms. To name a few: Amazon developed a



resume sorting system that was never deployed because it down-

graded resumes that included the words łwomenž and łwomen’sž

[21]. The Gender Shades project, a research initiative that analyzes

the accuracy of facial recognition software, found that 93.6% of the

errors made by Microsoft’s system were of darker skinned indi-

viduals [16, 17]. There is a risk that for natural resources, reliance

on algorithms for tasks such as forecasting can have unintended

drawbacks as well [27, 36].

Although best practices for data and model usage under the

principles of algorithmic accountability have yet to be standardized

or regulated, the field of research studying fairness, accountabil-

ity and transparency in algorithmic systems has grown rapidly.

Mature research communities spanning industry and academia

have arisen to focus on these topics beginning with Fairness, Ac-

countability, and Transparency in Machine Learning (FATML) in

2014 [2]. Other venues arose to cover fairness, accountability and

transparency issues in areas beyond machine learning, such as

FATES [13], FACTS-IR [11], HWB [14], AAAI/ACM Conference

on AI, Ethics, and Society (AIES) [8], FAT*/FAccT [1]. Professional

societies in computing such as ACM have issued statements of

transparency and accountability principles [7].

Algorithmic accountability focuses less on the selection of a

single ethical standard, but rather on methods for holding a system

to an ethical standard determined by domain experts. Algorithmic

accountability includes an action plan for redress when things go

wrong, as well as incentives for iterative development of algorithmic

systems with the inevitable evolution of its intended domain [18].

Transparency refers to understanding the inner mechanisms of

why an algorithm finds a particular output.

There are many incompatible ways to measure fair outcomes of

algorithms depending on the principle of ethics being applied [29].

AI researcher Arvind Narayanan calls the attempt to find a single

definition of fairness in computer science ła wild goose chase,ž and

suggests that algorithms should uphold the human values in the

domain for which the algorithm is used [33].

While algorithmic accountability is gaining traction in some

fields, the idea has not been widely applied in environmental sci-

ences. Ecological forecasts and projections are key tools for strong

environmental policy and management [19] and are becoming in-

creasingly important as we undergo rapid ecological change due

to climate change. Ecosystem forecasters fundamentally question

what will happen in the future provided different scenarios [22].

Decisions by management institutions are made daily and impact

socio-environmental systems. With the rise of automation, earth

and environmental science data has increased by many orders of

magnitude over the last decade [15] providing ecosystem forecast-

ers with a rich set of input data to analyze. Institutions like National

Oceanic and Atmospheric Administration (NOAA) and the National

Aeronautics and Space Administration (NASA) curate large datasets

collected in real time using remote sensing, which has significantly

increased the power of ecological models [3]. With this data deluge,

forecasters are utilizing machine learning models. High-granularity

deep learning models are particularly useful given the complexity

of the ecosystems [25].

Machine learning API’s and packages are increasingly available

in statistical software systems favored by ecologists [28]. For exam-

ple, using Tensorflow’s Keras library in R, ecosystem forecasters

Figure 1: Literature trends through time of ecosystem fore-

casting and algorithmic accountability, based on yearly hits

in Google scholar.

can now build a deep learning model in under ten lines of code.

However, widespread use of machine learning in earth and envi-

ronmental science is still fairly new. Ecosystem forecasting is also

just beginning to gain momentum in the scientific literature, which

provides an opportunity to set standards of algorithmic fairness,

accountability, and transparency early in the ecological forecast-

ing community [26] (Figure 1). The data itself, such as sea surface

temperature, salinity, and other environmental factors, may not

have the same direct ethical implications as personally identifi-

able data such as GPS location, photos, or purchase history. Still,

ecological models do have substantial impacts on the lives of indi-

viduals. They are used by policymakers and managers to regulate

businesses, manage ecosystems, and impact human health, and by

industry members to make business decisions. There is a danger

of an accountability deficit in the creation and use of ecological

forecasts. A recent paper by Hobday et al. [27] proposes one ethical

code for forecasting, including a call for openness and transparency,

but codes of ethics can vary across stakeholders and through time,

highlighting the need for algorithmic accountability.

It is worth emphasizing that different stakeholders can bring

different ethical considerations to a decision (e.g. valuing individual

rights vs. collective good, valuing human well-being vs. valuing

the well-being of all species collectively, or valuing short-term

economic gains vs. valuing long-term ecosystem health). Domain

experts are often trained with a code of ethics for their discipline.

This is another way in which the shift of responsibility from do-

main experts to technologists can fundamentally change the nature

of the decision-making process. Mechanisms for algorithmic ac-

countability and transparency help to expose the critical knobs of

the decision-making process to domain experts and enable them

to apply the code of ethics developed for their discipline to the

automated system.

Gebru et al. created templates for datasheets [23] and continues

this work in Mitchell et al. [32] with model cards that encour-

ages data creators, consumers, modelers, and machine learning



practitioners to follow a standardized ethical practice and report-

ing process. While these templates are useful starting points, best

practices should be developed at a domain specific level. For ex-

ample, while ethics is included in each of these frameworks, they

are less specific than the ethical principles outlined specifically for

ecological forecasting in Hobday. On the other hand, algorithmic

accountability is not considered in the Hobday principles. There

is a need to align general principles of algorithmic accountability

with domain specific codes of ethics as we illustrate in Figure 2.

In this case study, we apply Hobday et al.’s principles for ethical

forecasting in conjunction with algorithmic accountability frame-

works. The appropriate domain-specific code of ethics would vary

with the application. For example, developers of automated decision-

making systems in the domain of news amplification could apply

principles of journalistic ethics [6] in conjunction with algorith-

mic accountability frameworks. Developers of medical applications

could apply principles of medical ethics [10]. Developing and evolv-

ing these domain specific codes of ethics are an essential and long

standing part of most professional fields [4, 5, 12]. In conjunction

with algorithmic accountability frameworks that allow domain

experts to meaningfully oversee the implementation choices of

technologists, domain-specific codes of ethics offer a key way to

resolve Narayanan’s call to uphold the human values in each do-

main in which AI algorithms are used rather than search for one

universal definition of fairness [33]. The same issues arise beyond

AI with any complex automated decision-making system [31].

To build an algorithmic accountability framework, we utilize the

Datasheets for Datasets frameworks provided by Gebru et al. [23]

and also Gebru’s further work on Model Cards for Model Reporting

done in collaboration with a different set of coauthors, Mitchell et al.

[32]. We model algorithmic accountability in ecological forecasting,

specifically the use of machine learning systems by management

institutions in making high stakes decisions for both human and

ecological communities. We examine a shellfish toxicity model

developed by Grasso et al. [25] to model algorithmic accountability

in ecological forecasting, stepping through both templates. Finally,

we review ethical aspects specific to ecological forecasting that are

not captured in the current framework, as well as what algorithmic

accountability adds to the current ecological forecasting code of

ethics.

2 ALGORITHMIC ACCOUNTABILITY
FRAMEWORK

The Datasheets framework includes a set of questions to be asked

about any dataset. The Model Cards framework includes similar

questions that encourage extensive evaluation of machine learning

models [23, 32]. We pair these frameworks together for ecosystem

forecasting, and apply the questions to both our dataset and model.

Not all questions appropriate for this specific use. The Datasheets

framework focuses on how to handle datasets that include informa-

tion about individuals, often personally identifiable or private data.

They ask questions focused on how data about people should be

handled. However, in many other applications, like ecological fore-

casting, the data is not about individuals, and it is not the data that

needs to be kept private. Instead the model is based on data which

could be made public, but where the decisions made as a result will
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Figure 2: Conceptual visualization of how this case study

fits into the context of algorithmic accountability, domain-

specific codes of ethics, and ecosystem forecasting algo-

rithm design.

impact the lives of individuals. For Gebru et al. the issues of fairness

revolve around ensuring that private information is protected and

that groups of individuals are appropriately represented in the data

set. Based on our experience, we propose some different questions

for public data, which are often the basis for ecosystem forecasts.

One way to think about this is as Datasheets for public data versus

Datasheets for private data. Instead of looking at the way individu-

als are represented in our dataset, we are instead asking about how

individuals are differentially impacted by the decisions that result

from the use of public data. We ask who might receive an advantage

or disadvantage from results of forecasts based on public data. We

seek to make those trade-offs transparent and accountable to the

wide set of stakeholders impacted by those forecasts. The Model

Cards framework provides more broadly applicable questions, so

we did not need to adapt the framework for this particular study.

In the following subsection, the headings in the boxes reorganize

and regroup the questions from the Datasheets framework based

on the nature of this particular case study and its intended uses. In

some cases, the reduced number of questions led to some additional

reorganizations. For each subheading, we provide a series of ques-

tions posed by Gebru et al., and use them to audit the ecological

forecast developed by Grasso et al. We have not tested the revised

questions with other datasets, but it was our goal to propose a set

of questions that would work beyond this single case to ecosys-

tem forecasting more broadly and to other similar domains that

work with public data rather than private data about individuals.

In the following subsections we present our updated questions and

responses.

2.1 Applying and Adapting Datasheets for
Datasets to Public Data



Motivation, Composition, and Collection

For what purpose was the dataset created?

Who created the dataset?

What do the instances that comprise the dataset represent?

Is there a label associated with each instance?

Is there any information missing from individual instances?

What was the sampling strategy?

The data in this case is the result of the Marine Biotoxin Moni-

toring Program conducted by the Department of Marine Resources

(DMR) in Maine. The motivation behind this program is to protect

public health. Every summer the Gulf of Maine experiences harmful

algal blooms (HABs), which results in the accumulation of toxins in

shellfish harvested on Maine’s coastline. This program is interested

in paralytic shellfish toxins (PST) in particular, which can be lethal

to humans [40].

DMR staff sample the operating shellfish harvesting sites in

Maine on a (semi) weekly basis. These shellfish samples are then

processed by Bigelow Analytical Services (BAS) at Bigelow Labora-

tory for Ocean Sciences and tested for 12 toxins, specifically the PST

neurotoxin saxitoxin (STX) and 11 of its derivatives (GTX4, GTX1,

DCGTX3, GTX5, DCGTX2, GTX3, GTX2, NEO, DCSTX, C1, and C2)

[25]. If the shellfish sampled is above a specific total toxicity thresh-

old, the harvesting site is closed temporarily until toxicity drops

to healthy levels. High toxicity measurements may also motivate

higher frequency sampling in some cases. This is a long standing

management procedure that is used with the knowledge of shellfish

harvesters. It is required for harvesting sites to be tested by DMR.

DMR is currently responsible for the storage of the biotoxin data

used in this study, which is publicly available upon request. Each

instance represents a sample at a particular harvesting site. The

data includes Location ID, date, species, latitude, longitude, total

toxicity, and the weighted values of 12 different toxins generated

by BAS. The weights, which are set by BAS, correspond with the

chemical significance of the toxins in relation to the total toxicity

of the sample [25].

Preprocessing, Cleaning, and Labeling

Was any preprocessing/cleaning/labeling of the data done?

Was the raw data saved in addition to preprocessed/cleaned/labeled

data?

Is the code available?

For the forecasting system, the dataset was filtered for relevant

data. From the full dataset (years 2014-2017 across all species and

sites sampled), data was filtered to include only samples of blue

mussels (Mytilus edulis). Each record included date, location ID, to-

tal toxicity, and the weighted values of the twelve toxins available.

Rows with missing values for any of the toxicity data were omitted.

Then each instance was represented as a two dimensional array

containing toxicity information for each of the twelve toxins over

a five week period. So there were twelve rows, with a row repre-

senting a toxin, and five columns. Each column represented the

recorded toxicity level of the twelve toxins in a particular sample,

with five columns indicating five samples collected (semi) weekly,

so five weeks worth of data. These instances were filtered to remove

any instances with gaps longer than ten days between sampling or

less than five weeks worth of sampling data or missing data. The

remaining instances were labeled based on the total toxicity of the

subsequent week (i.e. five previous weeks of data were used to pre-

dict the toxicity of the sixth week). The instances were normalized

and then binned into four distinct severity levels, with the highest

level indicating a closure. The data was binned to mimic the com-

mon practice of categorizing natural events such as earthquakes

or hurricanes by severity. For more information on the data refer

to [25]. The code has not been released yet, but will be prior to

forecast deployment.

Uses

Has the dataset been used for any tasks already?

What other tasks could the dataset be used for?

Are there any tasks for which the dataset should not be used?

The measurements that comprise the dataset are used for the

day-to-day decisions made by DMR on whether to close or reopen

sites due to toxicity levels. This is the first use of this dataset.

The dataset could also be used to track and understand the mon-

itoring methods used by DMR. Further investigation could be done

to study the biological and oceanographic mechanisms that asso-

ciate the timing, intensity, and frequency of HABs with the timing,

intensity, and frequency of the resulting shellfish toxicity outbreaks.

It can also be used to prioritize the limited sampling resources on

areas where HABs are predicted. In that case, it is important to

consider the impact of a resulting feedback loop in which more

problems may be detected in areas where more sampling is done,

reinforcing the predictions themselves. This is similar to problems

with predictive policing encountered in criminal justice applica-

tions [20, 24]. This and other ethical considerations regarding data

use will be discussed in more detail below. The data, while available

on request, is generally not made publicly available in real time

because of the potential for misuse.

Distribution and Maintenance

Who is hosting and maintaining the dataset?

How can the owner/curator/manager be contacted?

Will the dataset be distributed to third parties outside of the entity?

When will the dataset be distributed?

How will the dataset be distributed?

Do any export controls or restrictions apply to the dataset?

The raw data is managed by DMR, but it is publicly available data

if a request is made to DMR’s Marine Biotoxin Monitoring Program.

Processed data is managed by the Center for Ocean Forecasting

within Bigelow Laboratory for Ocean Sciences and is not released

publicly, but the code used to process the data will be made available

prior to model deployment.

2.2 Applying Model Cards for Model Reporting

Model Details

Who is the person or organization developing the model?

Model Date? Version? Type?

Paper or other resources for more information?

This model was developed by the Center for Ocean Forecasting

within Bigelow Laboratory for Ocean Sciences. A Keras sequential

model was utilized, including an input layer with dropout, a fully

connected layer with dropout, and an output layer. The optimizer



used was Adam and the loss function categorical cross-entropy. All

model specifications are reported in [25].

Intended Use

Primary intended uses?

Out-of-scope uses?

This model was developed to forecast shellfish harvesting site

closures on a weekly, site-specific basis to aid DMR in making sam-

pling plans and shellfish harvesters andwholesalers inmakingmore

informed business decisions. DMR lacks the resources to sample ev-

ery harvesting site weekly, so this tool can help prioritize sampling

sites. The intended users are both DMR shellfish sanitation and

management staff as well as shellfish harvesters and wholesalers.

This model is intended to be used for shellfish toxicity forecasting

only. It is possible that the forecast could be incorporated as part of

an ensemble forecast if other similar forecasting products become

available.

Forecast deployment can advantage or disadvantage certain

groups relative to each other. For example, an ecological forecast

that predicted when lobsters would arrive on Maine’s shoreline

influenced the supply chain and impacted dealers contracts leading

to unexpected costs and benefits for different stakeholders within

the industry [27, 36]. This forecast is also vulnerable to out-of-scope

uses that could result in similar unintended consequences.

Factors

What are foreseeable salient factors for which model performance

may vary, and how were these determined?

Which factors are being reported?

The relevant factors to monitor are equitable sampling among

the harvesting sites, performance with major environmental regime

shifts and extreme events, and impacts to locations and businesses

as a result of forecasts of toxicity even if the business is not required

to close. These factors will be monitored as part of ongoing research

when the forecast is deployed.

Metrics

What measures of model performance are being reported?

Why were they selected?

Overall testing and evaluation accuracy were used to tune hy-

perparameters, but sensitivity and specificity were also reported.

For this particular model, false positives result in DMR sampling

that particular site, determining that the shellfish is safe to eat

and they remain open. False negatives could result in the site be-

ing overlooked and toxic shellfish to remain unsampled, therefore,

for this model, false negatives indicated poor model performance.

Uncertainty distributions around forecasts are also reported.

Evaluation Data and Training Data

What datasets were used to evaluate the model?

One dataset was used, as described above. The model was tested

over several training-testing splits, omitting a year’s worth of data

as the test set and using the other three years as training data, as

well as a test with 20% of the training data randomly sampled to

be used as validation data. The ultimate evaluation of the forecast

performance is running the model in a forecasting mode, where

only data prior to a certain date have been used in training and

testing, and evaluation is done using the forecast.

Quantitative Analysis

How did the model perform with respect to each factor?

Forecast performance was very good. Through the years 2015-

2017, when run in a simulated forecasting mode, the forecast only

failed to predict one closure level event out of a total of 49, with only

two false positives. For testing sets, accuracy was high, generally

greater than 95% and as high as 98%. This accuracy persisted for

forecasts out to two weeks. When the forecast range was extended

to three weeks, accuracy dropped sharply. For accurate forecast

instances (true positive and true negative of closure-level toxic-

ity), confidence measures were much higher than for inaccurate

forecasts instances [25]. The reasons for the very strong forecast

performance were not entirely clear from the forecast design, as

the neural network operates on some level like a black box. This

raises issues of interpretability.

Ethical Considerations

Does the model use any sensitive data?

Was the model intended to inform decisions about human life or

flourishing?

What risks may be present in model usage?

While the model uses only shellfish toxicity data, it is intended

to inform decisions about human life. There is an agreement be-

tween the forecasting team and the intended users that shellfish

harvesting sites are not to be shut down based solely on model

output. Forecasts can be used to inform DMR’s sampling strategy,

as well as to help industry make proactive decisions, but site clo-

sures and openings rely on direct measurement. However, even in

this context, there is information that informs decisions relevant

to human life or flourishing. Whenever automated systems are

interacting with human decision-makers there is risk for rubber

stamping. The continued collaboration with both stakeholders and

decision-makers greatly reduces this risk. There is also a risk that

forecasts of high shellfish toxicity could be used to drive business

to or away from a particular grower or location. This risk can be

mitigated with open lines of two-way communication with stake-

holders. Finally, there is a risk involved in the feedback between

the forecast and the system itself. For example, DMR is intending

to use this forecast to inform management strategy, meaning the

forecast will impact the sampling distribution of future data to be

used by the forecast, creating a feedback loop which can impact

model performance [39].

2.3 Forecast Modifications

Stepping through an algorithmic accountability framework can

highlight areas where the forecasting system could be modified.

We discuss a few such modifications here.

First, there is the issue of unintended consequences (discussed

under Intended Use). Whether a technology could be used outside

of its intended use is a question that applies across science, and is

one that bears repeated asking. For forecasts like this, working with

forecast users as the forecast is developed, and soliciting feedback

on reliability, clarity, and utility, is oneway to hedge against possible

unintended consequences.
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Figure 3: (A) Feature importance of random forest model using the twelve toxins to predict the total toxicity vs relative toxin

abundance within samples. (B) Forecast results using all toxins. (C) Forecast results using the eight most important toxins. (D)

Forecast results using six least important toxins, for comparison.

Second, there is the issue of interpretability (discussed under

Quantitative Analysis). The forecasting algorithm is highly accu-

rate, even down to the scale of individual sites, but it operates in

some ways like a black box. This could lead to drops in accuracy if

there are shifts in the ecology that change the underlying empirical

relationships. Post hoc analysis can help uncover system dynamics

that were not previously apparent, which can help zero in on the

important signals within the forecasting algorithm. In the case of

this forecast, performance evaluation simplified the information

underlying the predictive signal in the data. DMR shellfish sanita-

tion and management staff have observed that high levels of GTX1,

GTX3, and GTX4 tend to result in closures. Correlation analysis

was performed on the data and confirmed that the total toxicity of

the sample was highly correlated with GTX1, GTX3, and GTX4 as

well as STX and NEO. To further support this hypothesis, a random

forest was trained with 50 trees. The twelve toxins were used to

predict the total toxicity, and the features were ranked by impor-

tance. The three most important features were GTX3, GTX1, and

NEO, followed by GTX2, GTX4, and STX. Upon further analysis it

was found that these toxins are also the most abundant (Figure 3a).

This information was then used to evaluate the performance of the

neural network. The neural network was trained first on all twelve

toxins (Figure 3b), then on the eight most important features as

determined by the random forest (Figure 3c), and, for comparison,

the six least important (Figure 3d). The neural network operated

with very high accuracy with both twelve and eight most impor-

tant toxins, and, as expected, had the lowest accuracy when trained

on the six least important toxins. In addition to improving inter-

pretability, streamlining the input data could be used to pare down

the number of toxins necessary for BAS to measure, potentially

making the forecast less costly and more efficient, and opening the

potential for broader spatial and temporal coverage.

Finally, there are the issues around feedback mentioned earlier

(discussed under Uses and Ethical Considerations). This particular

forecast system requires monitoring of the coupling of human ac-

tions and forecast dynamics. When humans change their behavior

in response to forecast output, then the forecast becomes a compo-

nent of the system, interacting dynamically with human response.

Since the intended use of this model is to inform business and

management decisions, we can expect that certain changes will

occur with human response to the forecast. For example, sampling

distribution, site selection, or market dynamics could all respond to

forecasts. This type of feedback is referred to as reflexive prediction

or forecast feedback. Reflexive prediction can be either self-fulfilling

or self-defeating. An example of self-fulfilling reflexive prediction

is the use of algorithms for predictive policing [20, 24]. The in-

teraction of police behavior and the algorithmic system can lead

to a feedback loop of arrests. The predictions directed police to

patrol certain geographic areas, which produced more arrests in

that area, and in turn generated crime data for the area, therefore

directing the police to the same area. An example of self-defeating

reflexive prediction is epidemic forecasting, where a dire forecast

can motivate behavior that slows the epidemic, or vice versa [37].

Reflexive prediction can be a result of ecological forecasts because

forecasts are a key tool in developing environmental policy, which

can lead to shifts in ecosystems.

A few safeguards can help this forecasting system avoid reflex-

ivity. One can maintain a version of the forecast that is tuned con-

sistently on the same sampling sites, regardless of how sampling

sites or usage of the environment change over time. This can serve

as a baseline against which to monitor trends or patterns in the

full forecasting system. A second safeguard is to regularly solicit

input from forecast users on how the forecasts inform their decision

making.

3 DISCUSSION

In this section, we will address two questions. First, how should the

algorithmic accountability framework be adapted to the domain of

ecological forecasting? Second, how can algorithmic accountability

add to the current code of ethics for ecological forecasting?

Algorithmic accountability frameworks are mechanisms for con-

firming that models are in accordance with the different concerns

or even different codes of ethics brought to the table by different

stakeholders. Models should reflect the human values or ethical

principles defined by the domain in which they are operating, but

different disciplines involved in model creation can bring different

professional codes of conduct or ethics. We note that ethical princi-

ples for forecasting proposed by Hobday et al. [27] overlap with,

but are not the same as, the Association for Computing Machinery



(ACM) Code of Ethics [9] or its Statement on Algorithmic Trans-

parency and Accountability [7]. For example, both Hobday et al.

and ACM include calls for openness and transparency. However,

Hobday et al. include principles such as łDo not deliver forecasts

that would lead to unregulated impacts on the ocean (e.g. for fish-

eries without clear catch limits and/or enforcement).ž This is the

type of ethical principle that is likely to come from certain domain

experts, but might not represent the ethics of all groups of stake-

holders. An algorithmic accountability framework can incorporate

different codes of ethics, and can provide a path for correction if a

particular code of ethics leads a forecasting program astray.

The algorithmic accountability framework is designed to be gen-

eral, but adapting it with domain knowledge can be advantageous.

In the case of ecological forecasting, involving stakeholders as col-

laborators and maintaining two-way communication can avoid

some of the pitfalls that can arise around forecasting communi-

cation and unintended consequences. Ongoing dialogue can help

inform decisions about the best evaluation procedures and per-

formance metrics to use, which data collection methods are most

appropriate, and any risks, or asymmetries in risks, that would not

be obvious to a technologist. The most useful and reliable forecasts

are likely to be those where the goals and understanding of the

forecasters and the forecast users are aligned. In the domain of

ecological forecasting, one could add questions on how forecasts

will be communicated, and how feedback from stakeholders will

be incorporated into algorithm design. Finally, the ecological fore-

casting code of ethics urges technologists to consider when the

algorithm should be abandonedśe.g. in cases of substandard results

or unintended consequences. There are even circumstances where

automation might not be advantageous at all, as forecasts are often

best used as decision-support tools, not decision-making tools.

The algorithmic accountability framework offers other useful

perspectives to the domain of ecological forecasting. The specificity

and granularity of the questions make accountability clear and

traceable at each step. They force the algorithm developer to be

explicit in intention and approach, and lay the groundwork for

reproducibility.

Machine learning has seen explosive development and adop-

tion over the last decade, and the lessons learned from that field

can act as a guide to aid forecasters in avoiding common pitfalls.

User-friendly frameworks and APIs have lowered the barriers to

entry and have allowed people who are not machine learning ex-

perts to easily create applications for their domains. While machine

learning represents a powerful tool in the toolbox of ecosystem

forecasters, there are subtleties which could give a false sense of

high performance to someone without domain expertise in machine

learning. Algorithmic accountability frameworks help orient those

without a background in machine learning to potential problems

such as using a model on production data that deviates substan-

tially from the training data and issues such as algorithmic and

machine learning bias [38]. The development and deployment of

any model or automated decision-making system should be a com-

munity effort involving technologists, domain experts, front line

decision-makers, and stakeholders broadly defined. Each of these

groups may bring different concerns and even different codes of

ethics to the process. Applying algorithmic accountability is essen-

tial to understanding and managing the impact of these systems on

individuals and ecosystems.

At a general level, a road map for accountability is a tool for iden-

tifying where algorithm development went wrong and where it can

be improved in subsequent iterations. Algorithmic accountability

adds incentives and tools for iterative improvement [31]. It can be

safely assumed that complex models and systems always contain

errors of some kind. A key part of algorithmic accountability is

giving a wide range of stakeholders the tools they need to identify

errors throughout the life-cycleśin design, in implementation, in

deployment.

Beyond clear errors or bugs, every model simplifies reality in

some ways and these simplifications can advantage or disadvantage

some stakeholders. Algorithmic accountability gives stakeholders

the point of reference they need to advocate for changes in models

necessary to protect their interests. Fairness is difficult to define

even within a domain-specific context, but the accountability frame-

work empowers stakeholders to advocate for different fairness def-

initions and for outcomes they believe to be fair using evidence,

rather than being faced with an impenetrable black box.

While none of the approaches were exhaustive in addressing all

of the concerns of algorithmic decision-making, when used together,

algorithmic accountability frameworks and domain specific codes

of ethics help technologists think critically about the systems they

are designing and make continuous iterative improvements on their

models as a result (Figure 2).

4 CONCLUSIONS

We have used a case study to adapt algorithmic accountability

frameworks to the field of ecosystem forecasting. Algorithmic ac-

countability systems can shed light on possible improvements for

domain specific ethical codes and vice versa. This is increasingly

important in the domain of ecosystem forecasting due to the in-

creased demand for ecosystem forecasts in a rapidly changing en-

vironment, coupled with the increasing accessibility of machine

learning toolkits. Machine learning allows ecosystem models to

forecast on finer temporal and spatial scales, which is useful to

management institutions making day-to-day decisions. However,

these decisions impact both human and ecological communities,

and are often highly regulated. Co-evolution of ecosystem fore-

casting science with fairness, accountability, and ethics in machine

learning as a field of research will result in more powerful fore-

casts, deeper understanding of biological mechanisms, and more

equitable outcomes for stakeholders.

Operating under the standards of algorithmic accountability,

ecosystem forecasters take ownership not just for the predictive

power of their models, but also the human and environmental

consequences. Algorithmic accountability practice by ecosystem

modelers is a continuous process that requires attention for the

entire life of the model. By adapting existing frameworks such as

Datasheets for Datasets from its focus on personally identifiable

private data to the types of public data often used in ecosystem

forecasting application, we illuminate the importance of algorithmic

accountability frameworks for all machine learning systems, even

those that do not use personal information.



In this paper, we have focused on ecological forecasting. The task

of building domain specific ethical codes into algorithmic account-

ability frameworks applies more generally: essentially anywhere

that algorithms are increasingly replacing, or supporting, human de-

cision making. Ethical codes can be highly context dependent, with

implicit desired outcomes that may align with the value systems of

particular groups of stakeholders. An algorithmic accountability

framework compliments domain specific codes of ethics by incor-

porating the domain expertise of machine learning researchers into

auditing a system. We demonstrate how the combination of algo-

rithmic accountability frameworks and domain-specific codes of

ethics offer a key way to answer calls to uphold fairness and human

values in each domain in which AI algorithms are used rather than

search for one universal definition of fairness [33]. At a high level,

the complexities of machine learning, and the speed at which the

field is advancing, leaves the possibility of the implementation of

systems which have hidden biases. Pairing ethical codes of the field

in which a system is deployed with a high level frame of reference

for which to audit an algorithmic system leads to the creation of

systems that uphold human values and perform effectively.
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