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Abstract—The ability to accurately determine the geographic loca-
tion of an arbitrary IP address has potential in many applications.
Previous methods based on observing the relationship between
network delay and physical distance are inaccurate. Methods
based on delay similarity are more accurate, but inefficient
because they need information on a large number of landmark
nodes near the destination to be collected and maintained.
We propose a method that can overcome both problems. Our
method maintains a stable collection of network observers and
landmark nodes that covers the target area. Observers are
network nodes from which we can issue measurement command
such as ping and traceroute. Landmarks are IP addresses which
are reachable from observers and for which the physical locations
are well-known. With measurement results collected from these
landmarks, we trained two-tier neural networks that estimated
the geolocation of arbitrary IP addresses. Our experiments
demonstrate that a high accuracy similar to earlier methods
retained with a limited number of landmarks. More specifically,
the median error of our estimation is 4.1 km on the datasets with
1547 landmarks across US territory. The median error decreased
to 3.7 km on half of the test regions which contain more than
100 landmarks.

I. INTRODUCTION

The purpose of IP geolocation is to estimate the geographic
location of a given IP address. Accurate IP geolocation tech-
niques have high potentials in many applications. For example,
knowing the geographic location of a new client, a distributed
system like Netflix and Amazon AWS can dispatch the requests
to a nearest datacenter node and thus ensure a better service
quality. Online advertisement systems like Google AdWords
can offer their viewers more accurate information about local
discount activities. Online credit card transactions originating
in a region far away from the owner’s usual region of activity
can be investigated for potential fraud.

We gain two important insights from previous work. First,
for IP addresses that are geographically adjacent, their mea-
surement results from the same observer should be similar
([1][2]). Hence we can collect measurement data from land-
marks together with their locations, and use the data to train a
model that describes the distribution of locations conditioned
on measurement results. We then use this model to estimate
the location of an IP address from the measurement results.
Second, we notice that in a small region (of radius 100-300
km), this estimation problem will be much simpler than it is
in a wide area ([3][1]). For example, in a small area the earth
surface can be seen as an Euclidean space. The IPs that are
physically adjacent will more likely share the same ISP and use
similar type of cables. In addition, based on our observation,
it takes only a single hop for most subnets to reach another
in such a small region. Thus the latency between them can be
linear to their distance. Therefore, it may lead to more accurate
estimating results to use local data than the entire dataset.

With these insights, we designed and implemented a new IP
geolocation approach. Our work consists of two parts: data
collection and model training on two-tiered neural networks.
We first collect stable landmarks from different well-known
data sources, then measure these landmarks from different
reliable observers. These measurement results, together with
their known locations in the format of latitude and longitude,
form our training data. We then built two-tier neural networks
as the model. Tier 1 was trained with the entire dataset and
responsible for estimating a region the target IP resides in.
Once we determined the region, Tier 2 was trained with only
the local data to identify the final geolocation.

To estimate the geographic location of arbitrary IP address, we
first collect the network latency data from the observers to the
target IP, and use tier 1 to locate a region this IP resides in,
then use the Tier 2 network belonging to that region to give
an accurate estimate of the location of this IP address. This
model will allow us to calculate the geographical location of
arbitrary measurable IP address.

We collected datasets from three different sources - Ripe Atlas
probes, universities websites and city government websites.
Ripe Atlas probes reside primarily in residential networks and
academic networks. University websites are in academic net-
works and city government websites use primarily commercial
networks. These data sources offer substantial diversity to our
datasets, which are far larger than most of the datasets that
were used in previous research ([3][4][5]). Therefore, it gives
more accurate and reliable results, e.g., we have a median error
of 4.1 km with 1547 landmarks in US-based experiments.

The rest of the paper is organized as follows. Section II
presents our data collection process and results; Section III
introduces our two-tiered networks structure; Section IV de-
scribes our experimental results and analysis; Section V dis-
cusses related work; and Section VII concludes the paper.

II. DATA COLLECTION

We used Ripe Atlas network [6] to collect measurement
data. Ripe Atlas network is composed of thousands of small
hardware devices (“probes”) that spread across the world
and connect via the Internet. Through Atlas API, we can
issue ping and traceroute commands from these probes and
collect measurement results. To make sure that measurement
results capture the characteristics of landmarks distribution
from various geographic locations, we need observers to be
distributed as evenly among the target areas as possible. We
chose 14 probes from Ripe Atlas network as the observers as
shown in Figure 1.

We collected our landmarks from three datasets: Ripe Atlas
probes, university websites and city government websites. Fig-
ure 2 shows the landmark distribution. Table I lists the statistics



Fig. 1: Observer Locations

Fig. 2: Landmark Distribution

of these landmarks. We collected 3235 potential landmarks and
1547 of them returned valid ping results (successfully ping five
times) that we used for our experiments.

Ripe Atlas Probes: Probe owners are required to provide
physical locations of their probes when they register them.
This information and their IP addresses are available to us.
These probes are designed to respond to ping and traceroute,
as long as their networks don’t filter out these requests, which
makes them a perfect choice for landmarks. At the time we
wrote this paper, Ripe Atlas manages 1021 public and active
probes in the United States. Comparing to PlanetLab platform
that was widely used in earlier research ([3][4][7]), Ripe Atlas
provides a lightweight hardware solution and thus lowers the
threshold for participants. It also has a wider coverage than
PlanetLab, which has fewer than 300 sites in US.

University Websites: Academic institutions are believed to
have a higher chance to host their web servers locally. Thus
University datasets were widely used in earlier research as
either landmarks or test sets ([8][3][1]). However, the size
of those datasets are limited (∼150) and is too small for
our purpose. Our goal is to maintain a complete university
dataset covering all universities in the US. With information
from [9], we retrieved a list containing 2170 distinct entries
of university names and their states. For each entry, we
automatically queried Google Websearch API [10] for the
corresponding website, then used host and whois service to

Category Raw Valid Reachable
Ripe Atlas Probes 637 637 429

University Websites 2170 1858 826

City Government Websites 2880 740 292

Total 5687 3235 1547

TABLE I: Landmark Detail (Raw: All landmark candidates.
Valid: Landmarks after filtering and cross-validation.

Reachable: Landmarks that respond to ping)

Hosting Service Count
Rackspace Hosting 134

Amazon.com 102

Media Temple 34

Unified Layer 33

GoDaddy.com, LLC 29

Linode 27

TABLE II: Top Cloud Providers for University Websites

retrieve corresponding IP address, alias name and the owner
organization name. We adopted various methods to filter out
invalid data. For example, we exclude entries that use cloud
services such as Amazon AWS, Rackspace Hosting and other
top cloud providers to hold their web servers based on the
well-known IP address ranges of these services. We also use
Whois information to filter out organizations that don’t contain
keywords such as “university”, “college” or “institute” in their
names, but own more than one IP address from different
universities. For example, if the IP addresses from University
X and Y are held by company A named “Network Solution
Corp.”, we will notice University X and Y delegate their
website to company A instead of running a web server locally.
This kind of data will be filtered out.

Table II lists top cloud providers providing web hosting service
for universities. 1858 IP addresses were left after the cleansing,
and the corresponding geographic locations are again obtained
through Google Websearch API. This constructed our Univer-
sity Website dataset.

City Dataset: Our University dataset contains landmarks
spreading among most part of the United States. However,
their coverage is more dense in the Eastern US and on the
western coast, leaving gaps in Mid-west areas. We hope that
the introduction of city dataset can mitigate this problem. Most
US local governments have their own websites and we want
to extract those who are hosting their websites locally. We
retrieved US atlas data from [11], which gives us 38186 cities
and towns together with their geographic locations and popula-
tion. We assumed that bigger cities with more population had
higher chances to host their web servers locally. We chose
top 60 cities from each state, again made use of Google’s
Websearch API[10] and applied similar methods that we used
to process University Dataset. We also cross-validated the IP
addresses using MaxMind GeoLite City Database [12]. After
preprocessing, we obtained 740 entries as our city dataset.
Unlike the case of university dataset, where more than 85%
of the universities host their website locally, only 25% of the
cities are found hosting their website locally.

III. SYSTEM DESIGN

Our system consists of two tiers, each of which contains a
neural network trained with data collected from the landmarks.
Both tiers take measurement results from a target IP as an
input and output a latitude-longitude coordinate. The first tier
is trained using all of our training data including Ripe Atlas
probes, university websites and city government websites. It
is expected to locate a large region that contains the target IP.
The second tier is then trained with only data from that region,
to obtain the final estimate of target IP’s geolocation.
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Fig. 3: Radial-basis function network

A. Training Data Generation

Assume that we have N landmarks, and k observers in the
network. We send ping requests to each landmark from the
observers, collect RTT as a vector xn of size k. The landmark’s
physical location in the form of latitude and longitude can be
recorded as vector tn of size 2. Thus with the entire landmark
set, we have an input matrix X of size k × N , and a target
matrix t of size 2×N .

We adopt multiple methods to mitigate the impact of variance
in our input data. First, by adding a regularization term to the
error function, we make the network invariant to the variance
in input. This is detailed in the next section. Second, our input
data is designed to be multi-dimensional, hence variance in one
dimension will be diminished in the final output. In practice,
we did not observe a big impact from the variance in ping
results.

B. Tier 1 - Radial-basis Function Network

In tier one, our task is to find the region in which the target
IP resides. This is equivalent to finding the region that has the
closest distance to the target IP in the Euclidean space based
on the measured results. We achieved this by using a radial-
basis function network (RBF) [13]. A Radial-basis function is
a function in the form h(x) = h(||x− xc||). Each radial basis
function has a center xc, and the output only relies on distance
||x−xc||. A Radial-basis function network is a weighted linear
combination of radial-basis functions. Figure 3 demonstrate a
radial-basis function network. Let x = [x1, x2, ..., xn]T be the
input vector, xj be the center point for the j-th radial-basis
function, zj be the outputs from radial-basis functions, and y
be the network output. We have

zj = h(||x− xj ||)

y =

m∑
j

wjzj

where wi are the weight parameters to be learned from the
dataset.

We first applied K-mean clustering algorithm to the entire set,
determined an appropriate number of clusters, and obtained the
center point of these clusters. Subsequently, we created radial-
basis functions centered at them and trained the network.

We chose all landmarks from the lower 48 US states. With
Wikipedia data of US extreme points [14], we calculated a
minimal rectangle R = [xmin, ymin, xmax, ymax] enclosing

the lower 48 states. We then used the data to construct a
regularization term Ωb for the network. This regularization
term looks like a basin-shape function returning near-zero
values to points within a region and large values for points
outside of that region. In other words, it “punishes” the results
that fall out of the given region.

Ωb = αb(sigmoid(−x+ xmin) + sigmoid(x− xmax)

+ sigmoid(−y + ymin) + sigmoid(y − ymax))

where
sigmoid(x) =

1

1 + exp(−λx)

is the logistic regression function, αb is the weight factor for
this term and λ is the factor controlling the steepness of basin
side.

For an input x and target value t, we have t′ = y(x) where y
is the network function and t′ is the network output. The error
is given by ε = ||t− t′||. We measured the mean value of ε on
our dataset as εm. We then created a circular region centered
on t′, with radius εm. This region is the output from tier 1. In
the case this region does not contain enough landmarks, we
enlarge the radius until either we have enough landmarks in
the region or an upper bound is met.

C. Tier 2 - MLP Network and Comparison Network

Within the region identified by Tier 1, we used a multilayer
perceptron (MLP) network to do a more precise estimation
that focuses only on that region. An MLP network is a
variant of neural networks that consist of multiple layers of
units (aka neurons). Each neuron is a computation unit with
multiple inputs and single output. It takes a weighted sum
of the previous layer’s output, applies an activation function
and returns the result as its output. Figure 4 shows a general
example of two layers MLP, in which xi are inputs to the
network, zi are outputs from hidden layers and yi represent
outputs from the network. We have

zj = hh(

n∑
i

wijxi)

yk = ho(

m∑
j

wjkzj)

where hh is the hidden layer activation function and ho is the
output layer activation function. The weight factors wij are the
network parameters we need to determine.

We used a two layer MLP network with a logistic activation
function in the hidden layer , and a linear function in the output
layer. This structure had been proven capable of simulating
arbitrary functions with enough neurons [15]. We chose the
size of neurons in the hidden layer to be twice as much as input
size after observing that the target value distribution follows
a relative simple model in a local area. We then used stan-
dard techniques including error propagation and Levenberg-
Marquardt method to train the algorithm.

To deal with aforementioned variance in the dataset, we added
a regularization term Ωv to mitigate its impact. In [16] Bishop
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Fig. 4: Two-layer MLP network

gives an overview of such techniques in general, and we
applied it to our special case.

Ωv =

n∑
i=1

m∑
k=1

N∑
t=1

J2
kti

where αv is the weight factor for this term and

Jkti =
∂yk
∂xti

is the [k, i] element of the Jacobian Matrix of the network near
data point xt. Jtki can be evaluated effectively using numerical
differentiation.

Within the region in which the target IP resides, we use
a regularization term based on logistic sigmoid function to
constrain the estimated value to this region.

Ωr = α · sigmoid(||x− xcenter|| − ε)

where α and sigmoid is the same as described in previous
section, xcenter is the center of the target region and ε is the
radius.

The training process of MLP is a non-linear optimization
process. This means some results may represent local minima
rather than reaching a global minimum. We mitigate this by
repeating the training process multiple times and choose the
one that perform best on the entire dataset.

To compare performance of MLP network with other regres-
sion models, we developed a comparison network. It is a
framework that allow us to easily compare estimation perfor-
mance between different models. In the comparison network,
each regression model is implemented as a module. The
framework copies input to different modules simultaneously
and collects estimation output from them. It then compares
these output values with target values, calculates errors and
generates reports. As a comparison to MLP network, we again
used RBF network in the second tier.

IV. EVALUATION

In this section, we report the the estimation accuracy on
each layer of the network. The metrics we have chosen for
evaluation are also used by previous researchers ([3][1]), we
believe these evaluations are able to provide a good comparison
between our method and previous efforts.

Fig. 5: Error Distribution in Different Dataset

Fig. 6: Error related to Landmark Density

A. Tier 1 Estimation Results

Preference to Network Type: Figure 5 shows the cumulative
distribution function (CDF) of error in estimation results with
Radial-basis function network in Tier 1. With the curiosity to
know whether our method will have preference to network
type, e.g., academic, residence and commercial networks. We
know that any preference to network type should lead to
difference in their cdfs. However, the figure does not show
significant difference between the three cdfs. This reveals
that our method has no obvious preference to academic or
commercial networks. The median errors in all three datasets
are around 110 km and over 85% errors are less than 300 km.

Landmark Density Impact: We used 300km as a region
radius within which 70% of the landmarks have at least
50 landmarks in surroundings. There are more landmarks in
eastern US and on the West coast and fewer in the mid-
west. We are also interested in whether our estimation results
are impacted by landmark densities in an area. Figure 6
separates the landmarks into 4 bins and shows their cdfs.
Not surprisingly, the errors are larger in regions with fewer
landmarks. However, the difference is small. This illustrates
that the radial-basis function network is relatively resilient to
landmark density variance.



B. Tier 2 Estimation Results

To test the performance of tier 2, we constructed 1547 sub
datasets. Each sub dataset consists of one centered landmark
along with all other landmarks within a radius of 300 km.
We used all surrounding landmarks to estimate the center
landmark’s location and obtain an error distance for each sub
dataset. We empirically chose the MLP hidden layer size to
be 60% of the input data size, and repeatedly trained the
scheme for 50 times. The input dataset was randomly split
into three portions: 80% as a training set, 10% as a test set
and 10% as a validation set. The network with the smallest
sum of squared error value on the training set is used to
conduct final estimation. Figure 7 shows the error distribution.
It can be seen that the median error of distance is 5.1 km,
and in over 80% cases the error is less than 10 km. We
repeated the same experiment using RBF network with the
error distribution results shown in Figure 7. It can be seen
RBF gives a slightly better result than MLP with a median
error of 4.1 km. However, it has a longer tail and in the worst
case the error distance reaches over 60 km. On the contrast,
MLP has the worst case of around 35 km.

We were also interested in how MLP performance varies with
landmark density. We showed such relationship in Figure 8.
The x axis denotes the landmark count in each sub dataset,
and the y axis denotes the error distance in km. The blue spots
show the error distance of each region. We also studied how
the median error changed with landmark density. We separated
the data into 30 bins based on their landmark count (0-300)
and obtained the median error in each bin. The red line in the
figure shows this trend. It can be seen that the median error
becomes slightly smaller with the increase of landmark density.
In half of the regions where more than 100 landmarks are
present, MLP has achieved a median error of 3.7 km, while in
regions where less than 50 landmarks are present, the median
error is around 6 km. We also showed how RBF performance
varied with different landmark densities in Figure 9. It can be
noticed that RBF’s results are not as stable as MLP in different
regions. We can notice two obvious peaks near x-point 130 and
180 reach around 40 km, while in MLP the median error is
stably around 5 km. We also notice that the median error of
RBF does not show a decreasing trend with the increasing of
landmark density. Actually when counting the median error in
regions with more than 100 landmarks, we had an even slightly
higher result of 4.4 km. These results show us that in regions
with higher landmark densities (greater than 100), MLP has
better performance than RBF. Overall, these results justify our
hypothesis that using only local landmarks can lead to a higher
accuracy of estimation results.

V. RELATED WORK

Delay model based methods: A noticeable category of pre-
vious work in IP geolocation [8][3][4][17] was based on a
delay model. These methods start with the assumption that
network latency has a direct relationship with physical dis-
tances between nodes. The physical distances are then mapped
to a Euclidean space in latitude and longitude. Mathematical
models can then be applied to this space and the locations of
unknown nodes are estimated based on other known nodes.
These methods give promising results with a median error of

Fig. 7: MLP and RBF Error Distribution for Tier 2

Fig. 8: MLP Error Related to Landmark Density

around 30 km. However, they suffer from the inaccuracy due
to the incorrect or simple distance-to-latency assumption.

Measurement similarity based methods: We were inspired
by the work from Wang et al. [1], who proposed to determine
a big area that target IP resides in, then collect landmarks
in that area using data-mining techniques. However, we used
different datasets to conduct experiments. In [5] Youn et al.
described a method based on gradient-descent and forced
direction. Eriksson et al. [18] introduced their method based
on Bayesian approach to increase IP geolocation estimation
accuracy. These methods are good examples showing data-
based methods’ potential in IP geolocation. Craig et al. [2]
give a solution to the last-meter problem, allowing the location
of an IP address to be mapped to a physical street address.

IP-Geo Databases: These databases provide a quick way
to address IP geolocation problem. However, this method
also suffers from problems such as outdated data, incomplete
coverage and inaccurate information. For example, Huffaker et
al. [19] conduct a survey on available IP databases in market.
Their results show that IP databases have a median error (88
km∼727 km) higher than state-of-the-art IP geolocation meth-
ods and thus is incapable of being used to do IP geolocation
alone. Nevertheless, IP databases has their advantages such as
wide coverage and fast access speed. We can combine two
methods by use IP databases to look for landmark candidates
in a specific region, then update IP database entries regularly
using our method.



Fig. 9: RBF Error Related to Landmark Density

VI. FUTURE WORK

We are pleased with the ability of our algorithm to achieve
accuracy with fewer landmarks, but we would like to see if
we can simplify our approach. By systematically quantifying
the differential contribution of each aspect of the current
algorithm, we may be able to achieve a similar level of
accuracy with less complexity. For example, neural networks
are powerful tool that worked well for us on this problem.
However, we are interested in further exploring the underlying
properties of the problem that enable this result. We would like
to conduct further experiments to compare different methods
on the same data set.

In this study, we did not focus on cellular networks. Cellular
networks may have different properties not represented in
the dataset we collected. We are interested in collecting data
specific to cellular networks and evaluating the performance
of our methods in that environment.

Our method assumes that geograpically adjacent IP addresses
will also be adjacent on network topology. This assumption has
been justified by our research based on U.S. network. We are
interested in testing whether this assumption holds in other
areas of the world and would look to expand our testing in
regions such as Europe and Asia.

VII. CONCLUSION

In this paper, we have shown a novel approach that accu-
rately geolocates arbitrary IP address with fixed number of
landmarks. Subsequently, we created a two-tier neural network
system using a large dataset covering academic, commercial
and residential networks. We also built a system that regularly
updates measurement results and trains the schemes to keep
our estimation result up-to-date. We tested our system on this
dataset extensively, showing a similar accuracy as previous
state of the art, with a fixed landmark dataset.
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