IP Geolocation with Two-Tier Neural Network

Hao Jiang 1 Yaoqing Liu 2 Jeanna N. Matthews 2

¹Department of Computer Science The University of Chicago

²Department of Computer Science Clarkson University

KORKA SERKER ORA

Outline

[Background](#page-1-0)

[System Design](#page-9-0)

[Data Collection](#page-12-0)

[Evaluation](#page-18-0)

[Conclusion](#page-21-0)

What is IP Geolocation?

What can we do with IP Geolocation?

Credit card Fraud

K ロ ⊁ K 個 ⊁ K 差 ⊁

THE UNIVERSITY OF

活

Clark

≣

 $2Q$

Previous work - IPGeo Database

Pros

Cons

 \blacktriangleright Easy to use

- \triangleright Less accurate (City level)
- \triangleright Not up to date (Periodic update)

Kロト K型ト

 Ω

Previous work - Measuring network delay

 $Pos_3 = predict(Laten \leq \frac{1}{3}, \theta)$ **←ロト ← 伊** Ω

Previous work - Build a model

Design a simple model (mostly based on triangulation) and calculate the parameters. [\[GZCF06,](#page-25-0) [KBJK](#page-25-1)+06, [WSS07,](#page-26-0) [DPCS12\]](#page-25-2) Accuracy: ∼10km median error

Such a model requires a lot of assumptions, which are not necessarily true. (E.g., is there a linear relationship between latency and geographic distance?)

Previous work - Find nearby landmarks

Find the landmark that has the most similar observation results with the target. $[WBF+11]$ $[WBF+11]$ Accuracy: ∼1km median error Accuracy is greatly relied on the density of the landmarks. Hard to maintain a large group of landmarks.

- \triangleright Physically adjacent nodes have similar measurements
- \triangleright Network topology is simpler in a local area than in a larger area

[Background](#page-1-0)

[System Design](#page-9-0)

[Data Collection](#page-12-0)

[Evaluation](#page-18-0)

[Conclusion](#page-21-0)

Design Idea

Observers measure Model Target measure Train Predict

Landmarks

Our method employs machine learning technique to solve the problem. Instead of "choose" a model, we collect latency data from landmarks with known locations and train a model, then use this model to predict the location of unknown targets.

(□) (_门)

 Ω

Two-Tier Neural Network

Intuition:

Measurement from adjacent landmarks can yield a better estimation result.

Make a rough estimation with all landmarks, locate the region the target resides in. Then use only the landmarks in that region to do a more accurate prediction.

◆ロト→伊ト

 Ω

[Background](#page-1-0)

[System Design](#page-9-0)

[Data Collection](#page-12-0)

[Evaluation](#page-18-0)

[Conclusion](#page-21-0)

Data Collection - Observers

Ripe Atlas Probes

Ripe Atlas Anchors

We choose 14 anchors from Ripe Atlas Network as observers. These observers covers most area of US continental evenly. They are able to send ping/traceroute requests to arbitrary IP addresses.

Data Collection - Datasets

A large enough landmark dataset is crucial to the accuracy of our method. Our dataset consists of landmarks from three data sources

K ロ ト K 何 ト K ヨ ト

 Ω

- \blacktriangleright Ripe Atlas Probes
- \blacktriangleright University Webservers
- ▶ City Government Webservers

Data Collection

University Dataset

- \triangleright Get a U.S. university list from Wikipedia
- \triangleright Use Google search API to obtain the geographic location and its website
- \triangleright Use host command to obtain corresponding IP address

City Dataset

- \triangleright Get a U.S. city and population list from government website
- \triangleright Choose the top 50 cities of each state ordered by population in descending order
- \triangleright Use Google search API to obtain the geographic location and its website
- \triangleright Use host command to obtain corresponding IP address

Data Collection - Filtering

We filter out invalid data using various methods

- \triangleright Look for popular virtual host providers (Amazon, GoDaddy, Rackspace, etc.)
- \triangleright Look for owners that own multiple IP addresses (through whois)
- \triangleright Cross-validation using GeoIP database

Data Collection - Result

Table: Landmark Detail (Raw: All landmark candidates. Valid: Landmarks after filtering and cross-validation. Reachable: Landmarks that respond to ping)

[Background](#page-1-0)

[System Design](#page-9-0)

[Data Collection](#page-12-0)

[Evaluation](#page-18-0)

[Conclusion](#page-21-0)

Evaluation - Error Distribution

Error Distribution of the estimation result

4日)

 Ω

We compare the performance of two popular neural network types: Multi-Layer Perceptron (MLP) and Radial-Basis Function (RBF)

Accuracy:

- \triangleright Over 80% estimations have a error within 10km
- \triangleright MLP has a overall better performance than RBF

Evaluation - Accuracy related to number of landmarks

MLP Error related to Landmark Density

 \leftarrow

 Ω

- \blacktriangleright 3.7km in regions with > 100 landmarks
- \triangleright 6km in regions with \lt 50/andmarks
- \blacktriangleright Error decreases when landmark density increases

Outline

[Background](#page-1-0)

[System Design](#page-9-0)

[Data Collection](#page-12-0)

[Evaluation](#page-18-0)

[Conclusion](#page-21-0)

Our Contribution:

- \triangleright A novel method for IP Geolocation
- \triangleright Achieved similar accuracy with state-of-the art with a fixed amount of landmarks

Future Work

\blacktriangleright Mobile client

In this research, our data source contains only wired network nodes. Mobile network, especially cellular network clients may have different properties that is not represented in our dataset.

Contribution: High Complexity: High

\blacktriangleright Region

Our method assumes two geographically adjacent IP addresses will be adjacent on network topology. While this has been justified by our research result on U.S. territory, we are interested in expanding the testing in regions such as Europe and Asia.

 \Rightarrow

 $2Q$

イロン イ伊ン イヨン イヨン

Contribution: High Complexity: Medium

Question?

K ロ K イロ K K モ K K モ K エ エ エ イ の Q Q C

References I

畐 Ziqian Dong, Rohan D.W. Perera, Rajarathnam Chandramouli, and K.P. Subbalakshmi. Network measurement based modeling and optimization for {IP} geolocation. Computer Networks, 56(1):85 – 98, 2012.

暈 Bamba Gueye, Artur Ziviani, Mark Crovella, and Serge Fdida. Constraint-based Geolocation of Internet Hosts. IEEE/ACM Trans. Netw., 14(6):1219–1232, December 2006.

靠 Ethan Katz-Bassett, John P. John, Arvind Krishnamurthy, David Wetherall, Thomas Anderson, and Yatin Chawathe. Towards IP Geolocation Using Delay and Topology Measurements.

In IMC '06, pages 71–84, New York, NY, USA, 2006. ACM.

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

 $2Q$

Yong Wang, Daniel Burgener, Marcel Flores, Aleksandar 螶 Kuzmanovic, and Cheng Huang. Towards Street-level Client-independent IP Geolocation. In NSDI '11, pages 27–27, Berkeley, CA, USA, 2011. USENIX Association.

譶 Bernard Wong, Ivan Stoyanov, and Emin Gün Sirer. Octant: A Comprehensive Framework for the Geolocalization of Internet Hosts.

In NSDI '07, pages 23–23, Berkeley, CA, USA, 2007. USENIX Association.

