
Coalmine: An Experience in Building a System for Social Media
Analytics

Joshua S. White, Jeanna N. Matthews, John L. Stacy
Clarkson University, Potsdam, New York 13699

{whitejs, jnm, stacyjl} @clarkson.edu

ABSTRACT

Social media networks make up a large percentage of the content available on the Internet and most of
the time users spend online today is in interacting with them. All of the seemingly small pieces of
information added by billions of people result in a enormous rapidly changing dataset. Searching,
correlating, and understanding billions of individual posts is a significant technical problem; even the
data from a single site such as Twitter can be difficult to manage. In this paper, we present Coalmine a
social network data-mining system. We describe the overall architecture of Coalmine including the
capture, storage and search components. We also describe our experience with pulling 150-350 GB of
Twitter data per day through their REST API. Specifically, we discuss our experience with the
evolution of the Twitter data APIs from 2011 to 2012 and present strategies for maximizing the amount
of data collected. Finally, we describe our experiences looking for evidence of botnet command and
control channels and examining patterns of SPAM in the Twitter dataset.

Keywords: Social Media, Data Collection, Data Mining, SPAM, Botnet

1. INTRODUCTION

Social media networks make up a large percentage of the content available on the Internet and most of the time users
spend online today is interacting with social media networks, e.g. reading or contributing blog posts, tweets, status
updates, etc.

Social media networks all share one thing in common: they allow for users of the systems to contribute their own
content. However that's where the similarity stops, these systems come in many forms, including;

 General search and browsing sites that allow users to recommend or suggest content for other users.

 Video, audio and image sharing sites that allow users to share their own content or review others. Popular
examples include Youtube, Flickr, Vimeo and Hulu.

 Geo-mapping services allow that users to share maps about things going on in their communities on a wide
range of topics from politics to health. Once such example is Google Flu which tracks users reports of flu
outbreaks.

 Blogging and micro-blogging sites that allow users to post free-form updates on topics of their choice. These
include everything from individual personal blogs to mass micro blog aggregation sites such as Twitter.

 Profile Sharing Sites that encourage users to share personal information with individuals they know only
casually or not at all. Popular examples include Facebook and LinkedIn.

These categories for social media networks are regularly accepted classifications based on a number of works, the most
controversial of which is arguably entitled “Publicly Available Social Media Monitoring and Situational Awareness
Initiative” which was published by the Department for Homeland Security in 2010. It outlined a potential program to use
social network data to monitor potential threats to the United States [18].

While an analysis of the privacy concerns that social media network data mining poses is out side the scope of this work,
it is worth pointing out that we are continually monitoring the literature and law surrounding this. All the seemingly
small pieces of information added by billions of people result in a huge rapidly changing dataset. Searching, correlating,
and understanding billions of individual posts is a significant technical problem, even all the data from a single site such
as Twitter can be difficult to manage.

2. COALMINE

Coalmine was designed to be a flexible data mining architecture that can process large amounts of streaming social
media data, for data-mining applications. The initial focus of Coalmine was to process live Twitter updates, or
“tweets”,but a similar architecture could be used for other social media sites that export their data through a defined API.

Each tweet consists of up to 140 characters of free form text. However, when processing a stream of Twitter traffic,
there's a lot more than the 140 characters that make up a user’s message. Each tweet represents about 1K of data
including both the text of the tweet and a rich set of meta-data about it. This additional tweet meta-data, includes
information about the user, the user's account, and potentially the user's location at the time of the tweet. Since Twitter is
a social networking site, many of the connections between users can be gleamed from the included post data.

Our system consists of both a back end spanning multiple headless servers that captures and indexes the Twitter data
stream and a front end which can be used to access or query the indexed data. Each component of our system is
expressed in Figure 2. The four primary components are: (1) the data collection and storage component, (2) Ad-Hoc
query tool, (3) batch processing component, (4) and live filtering, classification, and alerting.

 Figure 1: Coalmine - System Diagram

1. The data collection and storage component consists of third party API's, such as the Twitter REST interface.
Our system has been developed in both Java and Python using Tweetstreamer as an initial connection library.
This client provides the basic wrapper around the Twitter API and facilitates authentication to the Twitter
servers [30].

The development team extended the simple TwitterClient to provide file IO, error handling, and multiple client
connections to Twitter, based on keyword and specific user. The data is received from Twitter as a stream of
JSON objects. As the individual streams are received, they are combined and buffered for file output in gzip
format.

At this time, the data is passed through an inline compression routine, before it is written to the output file. The
compression ratio is high, averaging a 1:4 ratio. Based on this compression ratio, it is calculated that, in the case
of Twitter, all of the tweets in a given day amount to ~150 GB of compressed data.

2. The query tool provides a user with the ability to access one or more data files through a Google-like search
interface.

The core of the query tool component, uses the Apache Lucene data indexing library. Each field of the tweet
meta-data is stored within a large indexed repository, created when the query tool processed the data file. The
user then queries the repository by selecting a meta-data field, such as “text”, for the text of the tweet and
provides a term to match.

For example, if a user is looking for a tweet containing the word “Twitter”, the user would enter the string
“text:Twitter” into the query text box. The query syntax is very similar to that of Google and allows for order-
of-operations within the query. Figure 1 depicts an example of the query panel and the resulting table generated
from a query.

As discussed previously, Coalmine supports manual searching similar to a typical Boolean search engine. We
have added the ability to specify the fields from which to search as well as logical operators. Table 1 denotes
the exact fields that the system currently handles. In addition null and non-null operators expressed as “None”
which is useful for mass filtering of some criteria such as Latitude and Longitudinal coordinates. For instance a
search for “Geo-Lat:!=None” would return all posts where the Latitude field was present meaning the post
could be attributed to an actual physical location.

To support these search terms we have implemented a standard Lucene index rather than some more custom
systems like TweetQL which in our studies did not scale as well when performing queries across billions of
records [28]. Lucene is a Java based solution for fast searching of indexed data. Currently the Coalmine front
end interface creates queries through Lucene using PyLucene [29].

Figure 2: Example Query Table

Contributions Location Followers_count Profile_image_url

Coordinates Retweeted Count Friends_count Protected

Created_at Retweeted Geo_enabled Screen_name

Hashtags Retweet Source ID Show_all_inline_media

URLS Text Translator_enabled Statuses_count

Mentions Truncated Language Time_zone

Favorited Contributions User_name Text-URL

Geo-Lat Application Notifications_enabled UTC_offset

Geo-Long Description Profile_background_color verified_user

In_Reply_To Favorites_count Profile_background_image Mobile_device_enabled

Table 1: Coalmine - Initial Search Criteria

3. The batch processing environment allows for more complex queries and post-processing. The core of this
component, is the Apache Hadoop open-source framework [27].

Hadoop allows for the efficient processing of large amounts of data. It provides developers with two key sub-
components. The first being a distributed file system for the organization, storage, and transfer of data
associated with data processing. The second is a distributed process execution environment based on the
MapReduce method [7].

This environment allows for efficient processing of data over multiple machines that are aligned in a cluster
configuration, and it can scale as new machines are added to the cluster. Map reduce allows for data to be
chopped into tiny pieces and processed by any machine within the cluster. The results of this can be recombined
when the processing is complete. To use the framework, the developer has to implement the processing logic
specific to their data-sets. The execution process is handled completely within Hadoop.

On small batches, Hadoop can add considerable overhead, and is not recommended. However, in our work
where batches are 10-100 gigabytes in size, the Hadoop execution environment is the only system that we have
found that is flexible and efficient at processing such large amounts of data.

4. The final component of the Coalmine system is the live filtering, classification, and alerting functionality. Once
a user has made a query, the front end returns the intended results, the results can then be used to form a filter.
These filters can be set to run all the time on all incoming data streams. To do so we have created a rudimentary
classification system for the incoming data. Since it takes too much time and computational power to filter
across multiple posts, our filtering system for now only works on a post by post basis. That is to say, we can
setup a filter that will look for all instances of a certain word, but we can not setup a live filter that correlates all
instances of a specific tweet across multiple accounts. To do so, would require keeping an enormous amount of
state in memory and we leave this for the batch processing component of our system. Currently when our
system does find a match using one of our live filters, we report that match using a text based log file in syslog
format. It is our plan eventually to produce logs can be read by a standard SIEM (Security Information and
Event Manager).

While our work on automated analysis is only in its initial phases we have determined the basic approach for doing so.
We first use the NLTK (Natural Language ToolKit)1 to define the following objects:

 User Profiles: These contain lists of unigrams, bigrams, and complete messages. Unigrams refer to single uses
of meaningful words that a user has posted, similarly bigrams are a combination of two words, while complete
messages are just that.

1 Natural Language ToolKit a Python module for processing linguistic data: http://www.nltk.org/

http://www.nltk.org/

 Account Profiles: These contain the complete historical record for an individual user. These profiles consist of
only the posts that we have recorded with our tool and as such may not be a complete record of everything an
individual user has ever posted.

 Corpus: This consists of all posts that we have ever recorded in our entire data-set.

To make use of this data for automated analysis we typically list all unigrams and bigrams by the frequency at which
they occur within a particular account profile. While the exact count of each is useful for determining how often a
particular user discusses a topic it is not necessarily all that interesting if we are trying to look for more covert
communications.

Using the statistics from an individual users account profile we can start to determine a trend in speech pattern and thus
develop a system to look for anomalies in those trends. The same can be accomplished using the complete Corpus as we
start to analyze the sentiment of the entire Corpus collected we start to see fluctuations in the usage of specific terms
which could eventually lead us to an automated system for analyzing the sentiment of large groups of people.

One of the issues we face as we continue the development of Coalmine is the determination of what's relevant and what's
not. Current estimates have stated that SPAM accounts for as much as 50% of all Twitter messages all though that
number appears to be receding in recent months [23, 24, 25]. A number of works have been published recently on just
this problem. Our current approach utilizes information diversity and user cognition to sort weed out the noise [26]. This
method utilizes entropy based calculations which we have already added to the output of Coalmine. These calculations
can be used to calculate the diversity of the complete corpus or the posts of an individual user. Our next steps include the
addition of entropy distortion minimization algorithms to reduce the number of results. We have a lot of work left to
completely integrate this technique, however initial results are promising.

3. DATA COLLECTION ISSUES

Data collection is by far one of the most complicated tasks in our work. We aim to support a number of social media
sites eventually, but focused on Twitter at this time. We learned Twitter posed significant problems all on their own, due
to both the ever changing methods that they use to distribute and format data, as well as the amount of out of date
documentation that does not seem to be maintained by Twitter.

During the course of our work, we have seen the death of Twitter’s Fire-Hose API and White-listing Service, the
addition of 0Auth, streaming gzip API, paid API access, new fields, and many more [1, 2, 3, 4, 5]. These changes have
created a number of issues for our once simple data collection system. In mid 2011, when Twitter switched to it's REST
API, it started limiting the number of requests per hour that a single IP/Username combination was able to make, to 350
per hour. This results in approximately 200 tweets per request for a grand total of 70,000 per application. An application
is denoted as any tool written and distributed to multiple users, but using the same account credentials. Twitter also
imposes a cap of 20,000 tweet responses an hour for any single IP address. This service is known as the Spritzer REST
API. This limitation means that based on a current estimated rate of 200,000,000 tweets occurring daily, and the average
application+user+IP combination, being able to receive no more then 480,000 tweets daily (20,000 * 24 hours), normal
users can only collect .24% of all tweets. This is a woefully small sample size on which to perform meaningful analysis.

After considerable searching for alternative, free Twitter data sources [19, 20, 21], we eventually developed a system of
our own which is now able, using an offset sampling method, to gather nearly all tweets in near real time, without
relying on a scrapper. Our development of our own acquisition method was a direct reaction to changes in Twitters terms
of service which prevents researchers from redistributing tweet captures [22]. This allows us the benefit of gathering all
addition meta-data associated with each tweet, which a typical html scrapper would not provide. We discuss this further
in the section on Twitter data structure.

Twitter uses a fairly simplistic method for sampling the stream it gives to users. Twitter says:

"The status id modulo 100 is taken on each public status, that is, from the Firehose. Modulus value 0 is
delivered to Spritzer, and values 0-10 are delivered to Gardenhose. Over a significant period, a 1% and a 10%
sample of public statuses is approached. This algorithm, in conjunction with the status id assignment algorithm,
will tend to produce a random selection." [6]

What this boils down to, is that for the Spritzer streaming API feed, twitter starts a counter when you connect. The
counter starts at 1 and counts to 100 before starting over. The first tweet "1" is sampled and returned to the connecting
client. After some basic experimentation we realized that by putting in a simple "sleep 1" command between the start-up
of two or more subscriber scripts,we can receive a completely different set of tweets between accounts. To prove this
point, we initially set up 5 accounts and manually started our script using each accounts credentials. After running for 24
hours, these 5 subscriber script account combinations collected 16,599,674 unique tweets While it depends greatly on the
timing of the startup script and the number of accounts used, the maximum amount of overlapping tweets collected by
our scripts has been no greater then 20% This overlap constitutes duplicate tweets that one account may have received
that had been previously collected by another account. Since tweets from the streaming API are only available when they
are posted we don't need to deal with historical overlap. Running 30 simultaneous subscribing accounts and staggering
collection time by 1 second each has reduced the total collection duplication across all accounts after the first two
months of collection to be no greater then 12%.

We have since automated our collection system and developed a network architecture using 30 individual IP's in a
round robin proxy fashion and a centralized proxy to support the collection of nearly 100% of all tweets. Our assumption
of near 100% collection is based on the measured number of non-duplicate tweets versus the sporadically published
numbers on number of tweets posted by twitter. Twitter has grown regularly since the first reported numbers in
November of 2009 which stated that the site received 27.3 million tweets a day to it's busiest day ever in May, 2 2011
with an estimated 250,000,000 tweets [31, 32, 33, 34]. Our system collects around 260,000,000 unique tweets a day,
while by our estimates it is capable of collecting up to 300,000,000. We have also started adding feeds from other
services such as Facebook, Youtube, and Linkedin.

4. COALMINE: BOTNET C2 DETECTION CASE STUDY

One of our initial focuses for Coalmine use was the detection of Botnet Command and Control Channels on Twitter. A
botnet is a network of infected systems known as “Bots”, based on the word “Robots,” that are remotely controlled for a
malicious individual known as the “Botmaster”. Botnets allow attackers to wage war on a much larger scale, which
potentially, can be lead from a single system. Typically, they are not employed by the average attacker, but instead by so
called nation states, criminal organizations, hacktavists, and those seeking profit [8, 9]. Botnets proliferate for both
technical and non-technical reasons. The primary reason is often that, owners of these malicious networks, sell access to
them as a service. Like any good businessman, they attempt to attract sales through “beating out the competition” on
stats and features. They must therefore grow their networks, by taking over more systems to use as bots.

Another popular reason is perhaps the simplest, revenge. A botmaster will grow their “armies” in order to carry out a
vengeful attack. This was proven true during the Low Orbit ION Cannon (LOIC) attacks carried out by the group
Anonymous. These occurred during the first quarter of 2010. [10] While that specific incident was non-traditional, in
that systems were infected because their owners purposefully downloaded the malicious software, it none-the-less proves
the point.

Before we go further, it is prudent to discuss the following common terms, which are used throughout this section.

 Botnet: A network of infected machines known as bots, that are controlled by a malicious entity. This network
is used to attack victim systems by exploiting a weakness, such as a maximum services connection limit.

 Bot: Once known as zombie computers, bots are the infected systems that do a botmasters bidding. Bots are
modular programs that can be updated with new commands and payloads to help them carry out orders. The
difference between a bot and a typical remote controlled system, is the legitimacy of access. Bots spread
through infection, while the infection means may vary, the end result is that the owner of a system has not
authorized the control.

 Botmaster: Once known as a bothearder, the botmaster is the human or group that controls the activities of a
botnet. This individual(s) may not be the one(s) who originally created the malicious software or the botnet
itself. These individuals/groups were once motivated by the traditional hacker cultural directive of seeing what
can be done. Nowadays, money, power, revenge and politics, are the primary drivers.

 Command and Control Channel: The command and control channels are the primary systems, sites, and
protocols, that allow a botmaster to communicate orders to their army. The channels are typically obscured
from normal view through means of obfuscations, encryptions, and a-typical (for the average user) protocols. A
botmaster doesn't communicate directly with each node in the army because doing so would be easily traceable.

Like any other network build-out, a botnet has a fairly standard creation procedure consisting of what Zhu, et al., discuss
in their work “A Botnet Research Survey” [11] as a four phased approach. While this approach is very basic, it aids in
understanding of the process by which a botnet is created.

1. Initial Infection: The exploitation of a system, that allows for it to become infected by a bot program. This
stage results in the basic ability to remote control a victim.

2. Secondary Infection: This usually consists of the botmaster sending a command that instructs the bot to
download a more sophisticated version of its self, a payload of some sort, or even carry out a simplistic initial
attack.

3. Malicious Activity: This is the act that the bot carries out, due to the command and/or payload that was sent.
This may be as simple as spreading the infection, or as complex as a distributed computing [5] function.

4. Maintenance and Upgrade: More often then not, a botmaster will send a command to a bot, that includes
instructions for upgrading or regular maintenance reporting.

From the previous statements, we now have a botnet ontology of sorts, whereby in common terms we have defined our
actors, assets, access methods, motivations, attacks on, and outcomes, using the typical format as shown in Table 2.

Actor Asset Access Method

Botmaster Bot (Zombie) Infection

Motivation Outcomes Attacks On

Profit, Power, Revenge, Cause An Army of Malicious Drones Victim systems/Services/Networks

 Table 2: Botnet Ontology Overview

4.1 Coalmine: Botnet Case Study - Detection

As we discuss later, a distinction can be made as to not only the methods used for botnet detection, but also the data
sources that feed these methods. In Bailey's, et al. (A Survey of Botnet Technology and Defenses) this distinction has
been made for us [12]. The paper describes data-sources as being limited, depending on sensor location. In this way, the
internal enterprise network has more access to data-sources, such as DHCP and DNS resolves, then the carrier network
provider would normally allow. While we disagree with Bailey, et al. that one network location is better then another, it
is better to think of each location as having unique insight into the problem and the fusion of multiple data sources as
being a better solution for traditional detection tools.

Currently the most popular tools on the market for detecting botnets don't actually detect the bots at all. Instead, they
focus on their command and control channels. Bailey, et al. defines a number of C2 channel detection methodologies.
They make the same points that we had in turn discovered, through our own initial testing. The three major competing
detection technologies are available, (1) Bothunter, (2) Botsniffer, and (3) Botminer. They all use the same method of
“Detection through Cooperative Behaviors.” In their own ways, each of these tools looked for the grouping patterns that
occur on these malicious networks, based on either statistical methods or comparative models.

1. Bothunter was funded by the Army Research Office and developed by SRI International. It is a tool which
detects bots using Snort as a dialog event generation engine. These events are fed into Bothunters modeling and
comparison programs, which look for significant correlations between real events and recorded malicious
events [13].

2. Botsniffer attempts to detect botnets using network temporal-spacial detection and passing the output though a
series of statistical algorithms that look for grouping behavior [14].

3. Botminer is really an add-on for Botsniffer that allow cross-correlation to be done on the data by breaking it
into cluster series. This is very useful for finding channels if you know what an existing one looks like, but can
generate a high number of false positives if you do not [15].

4.2 Coalmine: Botnet Case Study – Approach

Like most security mechanisms on the market today, current botnet detection methods rely on detection on a local scale.
However, as a global Internet community, security professionals must also develop tools that protect the environment as
a whole, not just their own small corners. Following this idea, we have focused on Social Networking sites as a C2
Channel data source. Truly, data sources such as Twitter provide a global environment for these malicious networks to
communicate and for us to test our tool. The detection/shutdown of these Botnet communications on such networks
would, potentially impact many millions of people. Given the scoped initial timeline of our work, we have focused our
first attempts on using Coalmine in a way that would detect these C2 channels on Twitter without any modification to
our underling code.

Recent trends have shown that Twitter has actually been used as a botnet communication system [16, 17]. Previous
works have hypothesized that while careful analysis of individual tweets and Twitter accounts can be done on a small
scale, to detect such C2 Channels, it should be possible to potentially automate the process. The approach we used
actively gathered social network feeds from Twitter and parsed them, for the tell-tale signs of botnet communications.

4.3 Coalmine: Botnet Case Study – Preliminary Results

The following, Table 3, depicts data that was collected for a 12 hour period on March 20 th using the keyword
“shutdown.” The column for message entropy was calculated by Coalmine on just the contents of the message field
using a standard Shannon's Entropy formula. Table 4 shows control messages from a few accounts taken at similar times
on the same day. We can verify within reasonable certainty that the messages in Table 3 do not contain botnet C2 traffic
because we know the owners of the accounts.

When you compare the entropy values from tables 3 and 4, it is readily obvious that not enough variation occurs between
the controls and the potential botnet commands to be considered definitive. More normalization of the messages needs to
occur and the entropy scale of 0-8 may need to be tuned to provide more significant differences.

 Table 3: Coalmine: Botnet Case Study - First Set Query Results

5. COALMINE: SPAM RESULTS BASED ON BOTNET STUDY

When performing our Botnet C2 Channel discovery case study, we noticed a high volume of identical Tweets from
different accounts. These messages were not re-tweets. They were individual posts from what we believed to be unique
users. Figure 5 shows one such instance as we looked for the term “Shutdown.”

We can assume that these messages with the exact same wording all occurring within a few hours are not a coincidence.
Upon manual inspection of the webpages for each of these Twitter accounts, it became readily obvious that these were
indeed SPAM related messages. In fact the exact messages that we found were what we believe to be filler messages
used to fool some of the anti-SPAM techniques that Twitter uses. Manual inspection showed that all messages within
these 9 accounts share the following:

 All messages are similar between accounts, though the order they were posted in varied

 Posts appear to occur about once every minute

 Account Photos all look like professional photographs. Further inspection using Google's image comparison
showed that they were from stock photo sites.

 Each account had a largely disproportionate number of followers and following for each account.

 The wording of each tweet consisted of very choppy English.

 Accounts either had no locations associated with them or were set to European and South American countries,
where English was not the primary language.

 Finally all of the accounts had one or more tweets with links to http://pyq.me which redirected to an IPAD
related phishing sub-page called ipad2a.

 Table 4: Coalmine: Botnet Case Study - First Set Control Group

Figure 5: Coalmine: SPAM Case Study - Sample Search Results for Term "Shutdown"

http://pyq.me/

6. CONCLUSION

In this paper, we present Coalmine a social network data-mining system. We described the overall architecture of
Coalmine including the capture, storage and search components. Coalmine has shown to be a promising security tool for
Social Network data-mining. It currently provides a means for large scale collection of Twitter data, in a manageable
format, as well as a framework for analyzing this data. Our next major steps will incorporate a number of techniques to
better analyze the connectivity of users and the interaction of opinion leaders with the masses. In addition, we will
continue our develop of a method that will incorporate some of the interesting things that we learned from our discovery
of SPAM channels, such as the large disproportions of followers and following, into a sophisticated map reducing
algorithm.

7. CITATIONS

[1] Christina Warren, “Measureing Social Media: Who Has Access to the Firehose?,” Machable.com, March 13
2011, http://mashable.com/2011/03/13/sxsw-smaroi/

[2] Mike Melanson, “Twitter Kills the API Whitelist: What it Means for Developers and Innovation,” February 11
2011, http://www.readwriteweb.com/archives/twitter_kills_the_api_whitelist_what_it_means_for.php

[3] Joab Jackson, “Twitter Now Using Oauth authentication for Third Party Apps,” Computer World UK,
September 1, 2010, http://www.computerworlduk.com/news/security/3237659/twitter-now-using-oauth-
authentication-for-third-party-apps/

[4] Arne Roomann-Kurrik, “Announcing gzip Compression for Streaming API's,” Twitter Developers Feed, Jan 20
2012, https://dev.twitter.com/blog/announcing-gzip-compression-streaming-apis

[5] Ryan Sarver, “Twitter + Gnip Partnership,” Twitter API Announcments, Nov 17 2011,
http://groups.google.com/group/twitter-api-announce/browse_thread/thread/e0a2006b0698f880?pli=1

[6] Twitter, “Streaming API Concepts: Sampling,” Twitter.com, Dec 2012, https://dev.twitter.com/docs/streaming-
api/concepts#sampling

[7] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: simplified data processing on large clusters. In
Proceedings of the 6th conference on Symposium on Opearting Systems Design \& Implementation - Volume 6
(OSDI'04), Vol. 6. USENIX Association, Berkeley, CA, USA, 10-10.

[8] B. Saha and A, Gairola, “Botnet: An overview,” CERT-In White PaperCIWP-2005-05, 2005.

[9] M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multifaceted approach to understanding the botnet
phenomenon,” in Proc. 6th ACM SIGCOMM Conference on Internet Measurement (IMC’06), 2006, pp. 41–52.

[10] A. Pras, A. Sperotto, et. al., “Attacks by Anonymous WikiLeaks Proponents not Anonymous,” Design and
Analysis of Communication Systems Group (DACS) CTIT Technical Report, 2010, pp. 1-10

[11] Zhaosheng Zhu, Guohan Lu, Yan Chen, Z.J. Fu, P. Roberts, and Keesook Han. “Botnet Research Survey,”
pages 967–972, 28 2008-Aug. 1 2008.

[12] M. Bailey, E. Cooke, et al. “A Survey of Botnet Technology and Defenses,” Cyber Applications &
Technology Conference for Homeland Security, Conference Proceedings, IEEE, 2009

[13] G. Gu, P. Porras, V. Yegneswaran, M. Frog, W. Lee. “BotHunter: Detecting malware infection through ids-
driven dialog correlation”. In Proceedings of the 16th USENIX Security Symposium (Security’07), Boston,
MA, August 2007.

[14] G. Gu, J. Zhang, and W. Lee. “BotSniffer: Detecting botnet command and control channels in network traffic,”
Proceedings, 15th Annual Network & Distributed System Security Symposium (NDSS’08), San Diego, CA,
2008.

[15] G. Gu, R. Perdisci, junjie Zhang, and W. Lee. “BotMiner: Clustering analysis of network traffic for protocol
and structure-independent botnet detection,” Proceedings, 17th USENIX Security Symposium (Security’08),
San Jose, CA, 2008.

[16] Ryan Singel, “Hackers Use Twitter to Control Botnet,” Wired Magazine, August 2009.
http://www.wired.com/threatlevel/2009/08/botnet-tweets/

[17] Jose Nazario, “Twitter-Based Botnet Command Channel,” Arbor Networks: Arbor SERT, DDoS and Security
Reports: The Arbor Networks Security Blog, August 2009. http://ddos.arbornetworks.com/2009/08/twitter-
based-botnet-command-channel/

[18] Donald Triner, “Publicaly Available Social Media Monitoring and Situational Awareness Initiative,” Office of
Operations Coordination and Planning: Departmetn of Homeland Security, June 22 2010.

[19] Graeme McMillan, “Tweet Eternal: Pros and Cons of the Library of Congress Twitter Archive,” Time
Magazine: Technland, December 8, 2011

[20] J. Yang, J. Leskovec, “Stanford Twitter data-set archive 6-2009 to 12-2009,” Stanford University, 2011:
http://snap.stanford.edu/data/bigdata/twitter7/

[21] Minas Gjoka, Maciej Kurant, Carter T. Butts, Athina Markopoulou, “Walking in Facebook: A Case Study of
Unbiased Sampling of OSNs: Data-set.” Proceedings of IEEE INFOCOM '10, San Diego CA, March 2010:
http://odysseas.calit2.uci.edu/doku.php/public:online_social_networks

[22] Audrey Watters, “How Recent Changes to Twitter's Terms of Service Might Hurt Academic Research,” Read
Write Web, March 3rd 2011:
http://www.readwriteweb.com/archives/how_recent_changes_to_twitters_terms_of_service_mi.php

[23] Douglas Main, “How Much of Twitter Is Spam?,” Popular Mechanics, August 4 2011:
http://www.popularmechanics.com/technology/how-much-of-twitter-is-spam

[24] Chao Yang, Robert Harkreader, Guofei Gu. "Die Free or Live Hard? Empirical Evaluation and New Design for
Fighting Evolving Twitter Spammers." Proceedings of the 14th International Symposium on Recent Advances
in Intrusion Detection (RAID 2011), Menlo Park, California, September 2011.

[25] Jonghyuk Song, Sangho Lee, Jong Kim. “Spam Filtering in Twitter using Sender-Receiver Relationship,”
Proceedings of the 14th International Symposium on Recent Advances in Intrusion Detection (RAID 2011),
Menlo Park, California, September 2011.

[26] Munmun De Choudhury, Scott Counts, and Mary Czerwinski. 2011. Identifying relevant social media content:
leveraging information diversity and user cognition. In Proceedings of the 22nd ACM conference on Hypertext
and hypermedia (HT '11). ACM, New York, NY, USA, 161-170. DOI=10.1145/1995966.1995990
http://doi.acm.org/10.1145/1995966.1995990

[27] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler., “The Hadoop File System,” IEEE 978-
1-4244-7153-9 2010

[28] Adam Marcus, Michael S. Bernstein, Osama Badar, David R. Karger, Samuel Madden, and Robert C. Miller.
2012. Processing and visualizing the data in tweets. SIGMOD Rec. 40, 4 (January 2012), 21-27.
DOI=10.1145/2094114.2094120 http://doi.acm.org/10.1145/2094114.2094120

[29] Yonik Seeley, “Full-Text Search with Lucene,” ApacheCon, May 2, 2007

[30] Rune Halvorsen, Christopher Schierkolk., “Tweetstream: simple Twitter Streaming API Access,” Version
1.1.1, 2011: http://pypi.python.org/pypi/tweetstream

[31] “Osama bin Laden's death sets Twitter record for sustained rate of Tweets”, LA Times, May 2, 2011:
http://latimesblogs.latimes.com/technology/2011/05/twitter-sets-tweets-per-second-record-on-news-of-osama-
bin-ladens-death.html

[32] Kevin Weil, “Measuring Tweets,” Twitters Blog, February 22, 2010:
http://blog.twitter.com/2010/02/measuring-tweets.html

[33] Brian Solis, “Guess How Many Tweets Fly Across Twitter Each Day,” Blog, November 15, 2009:
http://www.briansolis.com/2009/11/guess-how-many-tweets-fly-across-twitter-each-day/

[34] Twitter, “#Numbers,” Twitters Blog, March 14, 2011: http://blog.twitter.com/2011/03/numbers.html

http://blog.twitter.com/2011/03/numbers.html
http://www.briansolis.com/2009/11/guess-how-many-tweets-fly-across-twitter-each-day/

	1. INTRODUCTION
	2. Coalmine
	3. Data Collection Issues
	4. Coalmine: Botnet C2 Detection Case Study
	4.1 Coalmine: Botnet Case Study - Detection
	4.2 Coalmine: Botnet Case Study – Approach
	4.3 Coalmine: Botnet Case Study – Preliminary Results

	5. Coalmine: SPAM results Based on Botnet study
	6. Conclusion
	7. Citations

