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Abstract:
Phishing website analysis is largely  still a time-consuming manual process of discovering potential 
phishing sites, verifying if suspicious sites truly are malicious spoofs and if so, distributing their URLs 
to the appropriate blacklisting services. Attackers increasingly use sophisticated systems for bringing 
phishing sites up and down rapidly at new locations, making automated response essential. In this 
paper, we present a method for rapid,  automated detection and analysis of phishing websites. Our 
method relies on near real-time gathering and analysis of URLs posted on social media sites. We fetch 
the pages  pointed to by each URL and characterize each page with a set of easily computed values 
such as number of images and links. We also capture a screen-shot  of the rendered page image, 
compute a hash of the image and use the Hamming distance between these image hashes as a form of 
visual comparison.  We provide initial results demonstrate the feasibility of our techniques by 
comparing legitimate sites to known fraudulent versions from Phishtank.com, by actively introducing 
a series of minor changes to a phishing toolkit captured in a local honeypot and by performing some 
initial analysis on a set of over 2.8 million URLs posted to Twitter over a 4 days in August 2011.  We 
discuss the issues encountered during our testing such as resolvability and legitimacy of URL's posted 
on Twitter, the data sets used, the characteristics of the phishing sites we discovered, and our plans for 
future work.
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1. INTRODUCTION

Phishing [1] is the act of convincing users to give up critical personal information, either through conversation or some 
form of content manipulation. Most modern day phishing attacks occur by luring users into visiting a malicious web 
page that looks and behaves like the original. Once there, the user, if convinced that the page is authentic, may give up 
private information including authentication credentials or banking information. This information is typically used to 
commit some form of identity theft or fraud. 

The most common methods used today for the detection and analysis of phishing web sites are:

• Manual view and report services such as Phishtank.com [4]. This is by far the most common method 
which first,  requires actual users  to find, identify, and report suspicious web-pages and second requires, 
additional people to verify the status of reported pages.  

• Correlating links in known SPAM email to phishing sites [2]. Industry standard SPAM email detection 
techniques are used to identify SPAM email and then links from those emails are examined. Typical 
examination includes looking for URL redirection, or a variety of DNS tricks that might signify a phishing 
site. The emphasis is typically on examining characteristics of the URL itself. Unless a URL is malformed 
or some other SPAM-like characteristic is identified, phishing sites are often not identified in this way. 

• Crawler  classification of websites. Pages themselves are examined for suspicious characteristics like 
misspelled words, link obfuscation, right-click menu disabling, DNS redirection, etc. [3]. This method is 
similar to our own in that it places a strong emphasis on fetching and analyzing the actual page rather than 
just the URL. However, it looks for suspicious content in individual pages where we focus on identifying 
groups of pages that would “look” the same to an unsuspecting user.



2. OUR METHOD

Our work takes inspiration from this manual process of finding pages that “look the same”. Specifically, we automate  
some of what the human does to recognize duplication of an original page.  To do this we analyze a webpage based on 
some of its structural characteristics and based on the way it looks visually. Specifically, we record a number of page  
markup  characteristics  including  the  page  title  text  and  number  of  links,  images,  forms,  iframes  and  metatags. 
Throughout the rest of this paper we will refer to this 5 tuple as a pages structural fingerprint. The image analysis  
portion of this work is at it's simplest is done by setting a fixed dimension and quality setting for rendering a page within  
a headless browser and then taking a page screen-shot. We compute a hash of the resulting image and compare the hash 
values using the Hamming Distance equation. This process takes on average 4 seconds a page including software build-
up/tear-down time. To speed up the process further, we could prioritize image analysis for pages that with matches in  
the most easily parsed/computed items from the pages markup. 

Figure 1 shows a high-level overview of the full process. The first step is the real-time gathering of URL's from social  
media sites like Twitter. We used a modification of the get_tweets.php script provided by the 140Dev Twitter tool [5] to 
fetching the raw JSON version of each tweet and store it in a MySQL table. Next, we parse the tweets looking for  
URL's. Since Twitter requires all URL's to begin with the standard “HTTP://” to be hot-linked it was as simple as  
parsing the JSON data for that expression. We fetch the page content for each URL using PHP's LoadHTML and DOM 
Object walk through functions to visit the site, load the HTML into memory and finally count up each of the specific 
DOM objects. Each time a page has been parsed it is then logged in the master url_stats.csv file for later analysis. For  
each new URL, we also use XVFB and CutyCapt to render the resulting page and capture a screenshot. Finally, we 
compute a variety of hash values on the resulting image.

 

Figure 1: Phishing Detection Process Overview



2.1 Hash Values and Hamming Distance Image Analysis

In order to identify when two web sites look the same, we render the site, take a screen shot using CutyCapt and 
compute a hash of the resulting image. We compare website images by calculating the Hamming distance [14] between 
their hash values.  Hamming distance detects the similarity of two equal strings that the exact same length. The resultant 
number is the minimum set of substitutions that must occur from one string to the other to make them match. For 
example, when comparing two 32bit MD5Sum's, the possible Hamming value would be in the range of 0 to 32 where 0 
means they are identical and 32 means that every single bit is different. We experimented with a variety of hash 
calculation methods including cryptographic hashes like MD5, SHA512 and pHash (Perceptual Hash). pHash is a 
hashing algorithm specifically designed for fingerprinting multimedia files such as images that relies on discrete cosine 
transformation (DCT) to reduce sampling frequency in the file [15].  

File Name File pHash File MD5Sum File SHA512Sum Hamming 
Score (pHash)

Hamming Score 
(MD5Sum)

Hamming Score 
(SHA512Sum)
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Table 1: Comparison of Hashing Methods and Hamming Distance Calculations on Captured Phishing Site

In Table 1, we describe a set of experiments to compare these three hashing algorithms on a sample PayPal phishing site 
captured in a local honeypot in December 2007. We introduced a series of minor changes to the site and computed the 
Hamming difference relative to the original site for each hash algorithm. Our first change was minor modifications in the 
page text.  Specifically,  we removed all  cases  of the word “the” from the page. Relative to the original  image,  the  
Hamming Distance for the MD5 hashes was 3, while the SHA512Sum resulted in a distance of 0 and the pHash distance  
was 0. After completely replacing a few sentences, we began to see larger distances with the SHA512Sums as well.  
However, even with a significant portion of the text changed and the color of the PayPal logo altered slightly we still  
received a Hamming Distance of 0 using pHash. It was not until we changed the color of multiple items on the page and 
rearranged  things  that  we  started  to  see  higher  distance  values.  This  means  that  a  phishing  site  would  need  to  
significantly different from the original page that it was trying to spoof for it to go undetected with the pHash technique.



2.2 Method Verification Using Phishtank

We performed additional validation of our method using known phishing sites.  Specifically, we identified 5 fraudulent 
sites found on Phishtank.com [4] and matched them with their legitimate counterparts. We deliberately chose sites that 
had not yet been taken down so that we would be able to run our analysis tools on them. 

Table 2 shows the results of our page component parsing script on these 5 fraudulent sites and their legitimate 
counterparts. We matched 4 of 5 phishing pages to their legitimate counterparts using only the structural statistics we 
recorded. Adding the comparison of the screen-shot captures allows us to identify all 5. Other tools for used for phishing 
website identification report success rates in the range on average between 20% and 60% effective with only 1 tool in 
our literature review reaching nearly 90%. In addition the average false-positive rate for these tools is 42% [16, 17, 18]. 

(F)raud / 
(L)egit

URL Structural 
Fingerprint 

Page Title pHash Value Hamming 
Score

EBAY 
Fraudulent

http://fgn218.internetdsl.tpnet.pl/ws/eBayISAPI/SignIn.php?
&errmsg=8&pUserId=&co_partnerId=2&siteid=0&pageType=-
1&pa1=&i1=1&UsingSSL=1&k=1&bshowgif=0&favoritenav=
&ru=http%3A%2F%2Fwww.ebay.com%2F&pp=

22,5,3,0,1 Welcome to 
eBay&nbsp;-
&nbsp;Sign 
in

184150952480928
93183

0

EBAY 
Fraudulent

http://fgn218.internetdsl.tpnet.pl/track.php 22,5,3,0,1 Welcome to 
eBay&nbsp;-
&nbsp;Sign 
in

184150952480928
93183

0

EBAY 
Legitimate

https://signin.ebay.com/ws/eBayISAPI.dll?
SignIn&UsingSSL=1&pUserId=&co_partnerId=2&siteid=0&ru
=http%3A%2F%2Fmy.ebay.com%2Fws%2FeBayISAPI.dll
%3FMyEbayBeta%26MyEbay%3D%26gbh%3D1%26guest
%3D1&pageType=3984

22,5,3,0,1 Welcome to 
eBay - Sign 
in

184150952480928
93183

0

CIBC 
Fraudulent

http://www.shop-cafe.ru/ 24,10,2,0,1 RETURNED 
NOTHING

137717613698943
38304

0

CIBC 
Legitimate

https://www.cibconline.cibc.com/olbtxn/authentication/SignOn.c
ibc

24,10, 2,0,1 RETURNED 
NOTHING

137717613698943
38304

0

HALIFAX 
Fraudulent

http://www.njcabinet.com/old_stuff/data/tmp/Halifax/index.html 21,2,2,0,7 Welcome to 
online 
banking

167161696874898
23731

0

HALIFAX 
Legitimate

https://www.halifax-online.co.uk/_mem_bin/formslogin.asp?
source=halifaxcouk&simigvis=Mi43Ni4yNTMwMTAyMzgzOT
Q3MS4xMzEyMDQ2OTEwMjAz*

24,2,2,0,7 Welcome to 
online 
banking

167161696874898
23731

0

Paypal 
Fraudulent

http://si4r.com/_paypal.co.uk/webscr.html?
cmd=SignIn&co_partnerId=2&pUserId=&siteid=0&pageType=
&pa1=&i1=&bshowgif=&UsingSSL=&ru=&pp=&pa2=&errms
g=&runame=

0,7,1,0,2 RETURNED 
NOTHING

167161696874898
31923

1

Paypal 
Legitimate

https://www.paypal.com/cgi-bin/webscr?cmd=_login-
submit&dispatch=5885d80a13c0db1f8e263663d3faee8d1e83f46
a36995b3856cef1e18897ad75

27,3,0,0,2 Redirecting - 
Paypal

184397071904318
36096

0

Table 2: Known Phishing/Non-Phishing Site Characteristics

Our experience with these five sites illustrates the importance of using both the easy to compute structural characteristics 
and  the  image  comparison  via  hash  value.  Four  of  the  five  fraudulent  sites  can  be  detected  based  on  structural 
characteristics alone. Due to the nature of how some sites are copied and used for phishing, we won't always have exact 
matches based purely on page markup characteristics. To illustrate this we look at the analysis of Paypal and its cloned 
site in Table 2. In this case the fraudulent site was of very poor quality as set against phishing standards. The site did not 
replicate any of the functionality of the page it was spoofing other then the login form. As such, none of the other page 
characteristics matched up. Yet, when we look at the output of our image capture as shown in Figure 2, we can see that 
the page still pulls off the “authentic” look part of the site1.

1The Page Title field of the fraudulent Ebay page is formatted differently then the legitimate Ebay Sign-in page. This is easily overcome by removing 
the  special HTML encoding characters.



3. ANALYSIS OF LINKS FOUND IN TWITTER DATA

After verification of techniques we moved on to the larger “wild” data set of unknown URLs. Specifically, we look for 
URLs in Twitter posts. Previous studies have shown that 12% of all URL's posted on Twitter may be malicious. [6,7] 

A real-time source of candidate phishing sites is increasingly important as attackers shorten the time a given phishing  
site is active before the content is moved onto a new compromised host.  We also chose Twitter for the collection of 
URLs because it allowed for real-time interaction. Our work aims to shorten that life-cycle by providing near real-time 
feedback and thus needs a way to bring URL's in that are relevant and live at the time of processing. Traditional crawlers 
are not up to the task and we do not have the resources of companies like Google at hand. With their real-time API, 
Twitter offers one of the best means of potentially malicious near-real-time URLs. 

We captured 81.9 GB of raw JSON data representing roughly 4 days of Twitter traffic including a total of 19,624,335 
tweets. Table 3 shows the details of the dataset. In our initial experiments, we were able to capture 2,813,476 unique 
URL's. However, in practice we were only able to process 1,829,531 via our page characteristic technique. This was due 
to a large number of URL's being un-resolvable by the time we processed them. It is difficult to know in all cases why a 
URL was unresolvable, but we can identify a number of factors besides phishing sites that have been taken down by 
attackers. In Section 3.2, we elaborate on these other reasons URLs were unresolvable including typos and unavailable 
URL shortening services.

Duration 7-25-2011(13:15:45 EST) --> 7-29-2011(11:01:32 EST)

Number of Tweets Captured 19,624,335

Number of URLs Within Tweets Captured 3,902,699

Number of Unique URLs From Total Tweet Dataset 2,813,476

Number of URLs Processed For Page Characteristics 1,829,531

Table 3: URL Data-set Collected From Twitter

At this time we have not had the opportunity to sufficiently analyze the captured URL dataset from Twitter. In the future 
we are interested in measuring the frequency at which legitimate URL's versus Phishing URL's are posted, and how 
many URLs come from individual users and measuring the number of intentional versus accidental posting of Phishing 
URLs. In the following sections, we elaborate on some of the challenges we faced in processing and characterizing links  
found in Twitter data.

Figure 2: Example Image Capture of EBay.Com Phishing Page Using ImageMap



3.1 Data-Collection Issues

The total size of captured and stored data from the Twitter API is even larger than the raw feed after the JSON stream is 
decoded.  We tried a number of popular database systems like MySQL, Hadoop and Cassandra. With each system tried, 
we ran into substantial problems in achieving fast access to million+ entry tables. In this prototype, we used MySQL and 
divided logical database tables into roughly 9 hour increments to allow for smaller table sizes with a limited number of 
entries in each. After decoding and importing the 81.9 GB of JSON data into MySQL, this data was slimmed down to 
27.3 GB of pure content, which shows how much overhead is included in each tweet. After parsing the MySQL database 
and creating a new table of just URL's, we ended up with 193.5 MB of usable links. 

3.2 URL's Processed for Page Characteristics Issues

From Table 3, we note that the number of URLs that were processed for page characteristics was inconsistent with the 
number of unique URLs gathered. In this section, we discuss some of the reasons for this difference: 

 After manual investigation, it appears that many of the URLs are bad/incomplete from the moment they are 
posted. For example, a URL might end with .ocm instead of .com. We suspect simple typos.  Without analyzing 
all of the URLs, we can't put a percentage on the number of typographical error related failures across the entire 
data set, but an evaluation of 1000 non processable URL's revealed that roughly 20% were due to typographical 
error. 

 The next largest contributor was expired or non-working shortening services. A great example of this was 
goo.gl which is fairly new at the time of this research. The goo.gl shortening service is a google labs program 
that has been plagued by outages. At the time of the 1000 URL manual analysis, failed expand URL shortening 
caused roughly 20% of all the non-processed pages.  

 The  remaining  60% of  non-processed  manually examined  URLs  were  simply unreachable  in  one  way or 
another, some had unresolvable DNS entries and some returned “page not found” errors.  As we discuss later, 
we used a page load time  of 3000 ms and suspect that some tuning of that value may be necessary. In future  
work, we plan to explore a wider range of time out values and investigate the cause of truly unresolvable URLS 
in more detail. 

3.3 URL's as Images & Image Collection Issues 

Image collection was done using a combination of two tools, CutyCapt [8] and XVFB [9]. The first of which, CutyCapt, 
takes screen-shots of a fully loaded web-pages by launching a Webkit based GUI-less web-browser. XVFB was used to 
provide CutyCapt with a virtual frame buffer, since the server this entire processes resided on did not have an X server 
installed. The problems involving these two pieces of software are as follows:

 CutyCapt can only process one URL at a time and launches a new instance of its self every time it does so. On a 
headless system, this requires XVFB to launch a virtual X session every time CutyCapt processes a URL. In 
conjunction with the additional time required to launch, there is an associated tear down time for that X session. 
If a delay is not included at the end of the CutyCapt URL parsing loop, then an X session collision occurs and 
will keep occurring for every link read into CutyCapt until the X session fully closes.  To deal with the previous 
issue of X session build up and tear down time, we attempted to run multiple instances of XVFB and CutyCapt 
simultaneously on different groups of the URLs. The basic concept of this was to split the URL input file into 
equal pieces and when requesting the Image capturing script we would then increment the virtual display 
number in XVFB. Each instance could then append their results to the output CSV file. However this proved 
unreliable since XVFB uses such a high percentage of system resources when starting up. More then two 
instances of XVFB running at one time slowed the Quad-Core test system down to a crawl.

 Website load time was the last major contributing factor to the limited number of URLs processed for image 
comparison. We put in a hard limit of 3000ms for a page to load before CutyCapt would simply stop and move 
onto the next, this proved insufficient for many pages. There is of course a trade-off between the timeout value 
and our ability to process all URLs in real-time. 



In the future, we would like to explore modifying CutyCapt to add multi-threaded support and X session reuse to the 
code base. By reusing a single X session we would reduce the multiple seconds of latency that is incurred each time that 
build up and tear down occurs. Adding multi-threaded support that incorporates virtual X session reuse would be even 
more beneficial. We would be able to increase load time wait in CutyCapt to support slow sites, without waiting for one 
site to complete, before processing another. 

3.4 Twitter Link Analysis Results 

Now we can look at the analysis of our known fake/non-fake Ebay pages as outlined in Table 4. Ebay is a great example 
for this work since it at the moment it  is one of the top spoofed sites. [10,11] Table 3 shows significant correlation of 
both the structural site characteristics and image hashes between the site characteristics between the fake pages pointed 
to in our Twitter data set and the legitimate Ebay site. Table 4 shows the page screen-shots as well as pHash values of 
the real and fake Ebay login Pages. Notice that the hashes are identical for the legitimate and fraudulent sites.

The system that we have build currently allows for exact match searching, that is, results that have an exact characteristic 
match and/or exact distance score. In addition we have the ability to search for other combinations  of characteristic 
measurements and specific distance scores. This allows us to search on less precise matches. We used this to search for 
exact matches of the top 5 most phished sites and Table 5 lists the number of exact matches for each. This could also be 
used by the administrator of any web site to search for matches to their site.

Table 6 also lists the characteristics of what has been reported as the top most copied main site pages in the last year. 
These characteristics were used to complete a basic search of the data set. 

Status URL Screen-shot Structural 
Fingerprint

pHash

Fake http://fgn218.internetdsl.tpnet.pl/ws/eBayISAPI/SignIn.ph
p?
&errmsg=8&pUserId=&co_partnerId=2&siteid=0&pageT
ype=-
1&pa1=&i1=1&UsingSSL=1&k=1&bshowgif=0&favorite
nav=&ru=http%3A%2F%2Fwww.ebay.com%2F&pp=

22,5,3,0,1 1841509524809289
3183

Fake http://fgn218.internetdsl.tpnet.pl/track.php 22,5,3,0,1 1841509524809289
3183

Legitimate https://signin.ebay.com/ws/eBayISAPI.dll?
SignIn&UsingSSL=1&pUserId=&co_partnerId=2&siteid=
0&ru=http%3A%2F%2Fmy.ebay.com%2Fws
%2FeBayISAPI.dll%3FMyEbayBeta%26MyEbay%3D
%26gbh%3D1%26guest%3D1&pageType=3984

22,5,3,0,1 1841509524809289
3183

Table 4: Phishing and Non-Phishing Site Image Hashing Comparison

Using just the structural characteristics, we found a number of false positives. For example,  we found other links that 
contained the same pattern of tag information, such as with Paypal's “71,6,3,0,3.” Interestingly, EzineArticles.com sub-
pages like: http://EzineArticles.com/6429341 use a strict format template that happens to have characteristic matches to 
Paypal.com's landing page at the time of these experiments. However the addition of the screen-shot image information  
correctly identifies this false positive. 

http://EzineArticles.com/6429341w


Site Characteristic Map pHash Distance 
Score

http://EzineArticles.com/6429341
71,6,3,0,3 15835713822348909969 24

http://www.paypal.com
71,6,3,0,3 18446677844303266811 0

Table 5: False Positive Elimination Using Hash Distance Scoring

As Table 6 shows, when comparing the structural characteristics of two distinctly different pages we can not distinguish  
any difference. However when adding in the pHash value of the pages and using them to calculate Hamming distance we 
can see that indeed the pages do not match.

URL Structural 
Fingerprint 

Phash Value Sites With 
Matching 
Structural 

Characteristics

Sites With 
Exact Match 
pHash Values

Sites With 
Hamming 

Distance Scores 
< 10 (Highly 

Related)

http://www.facebook.com 20,1,1,0,3 35046933135104 16 0 0

http://www.us.hsbc.com/1/2/
3/personal?home=personal

72,16,2,1,6 18446744039097171959 10 0 0

http://www.paypal.com 71,6,3,0,3 18446677844303266811 172 0 1

http://www.irs.gov 85,27,2,0,2 3607948993784217088 0 0 0

http://us.battle.net/wow/en 96,6,1,0,2 9259558749612483190 61 0 0

Table 6: Markup Characteristics of “Most Spoofed Sites” Landing Pages

4. Related Work

Anti-Phishing research has been done for a number of years and falls into a number of categories. A.P.E Rosiello, et. al. 
define these categories as Email-Based, Blacklist-Based, Visual-Clue-Based, Website-Feature-Based, and Information-
Flow-Based. The method employed in their work could be best categorized as Website Feature Based and consists of a 
string search technique which identifies the DOM objects within a page and builds a tree of those objects. This tree is 
directly compared to those of known legitimate pages. When a page claims to be a specific site, all DOM trees are 
compared with a known good sample to look for dissimilarities [19]. This approach works as a client side browser plugin 
and thus is useful on an individual user basis but is not a conducive method for broader analysis.

To date the most widely deployed approaches for protecting users from Phishing attacks are Blacklist-Based. Blacklist-
Based tools that enable them to be warned away from sites that are known to be malicious but have yet to be taken 
down. These tools rely on known blacklisting services such as Phishtank.com that rely on the submission of suspicious 
URLs for analysis. After a suspicious URL is submitted, a variety of techniques are employed to triage the link including 
suspicious DNS reputation, suspicious URL format, URL containment of other domain names in a directory field, and 
actual matching of known URL terms using Lexical analysis [13,  20, 24, 25, 28]. These methods reduce but do not 
eliminate the manual work required. Most have high false positive detection rates and all methods get the URL's that 
they are analyzing from other services which feed them primarily malicious or at least suspicious URL's to analyze. 
They have not been shown to be effective at finding malicious URLs in a a large live data set of predominately 
legitimate URLs.

http://us.battle.net/wow/en
http://www.irs.gov/
http://www.paypal.com/
http://www.us.hsbc.com/1/2/3/personal?home=personal
http://www.us.hsbc.com/1/2/3/personal?home=personal
http://www.facebook.com/
http://www.paypal.com/
http://EzineArticles.com/6429341w


Google has developed and deployed a hybrid approach. Their system relies on both Google's own page ranking system 
and an email SPAM filtering system to per-identify potentially malicious pages before analysis [26]. They also apply a 
machine learning classifier which considers the characteristics of the URL and the website or message content. While 
this method works well in Google's own environment, it is unreasonable to assume that an individual institution, or even 
government would be able to deploy their own version of it given Google's unique place in the Internet infrastructure. 

Some other methods for detecting phishing websites that are related to our own Website-Feature-Based and Visual-Clue-
Based. C. Ludl, et. al. presented evaluation results of a number of anti-phishing tools and determined that the best relied 
on both blacklist sites that used manual reviewers and those that did some sort of analysis using specific page 
characteristics. We validate our choices of page characteristics in our own method against those stated in their work [22]. 
We further validate our method by considering the effectiveness of methods such as the use of Page Color Histogram 
comparison matching and Color Vector Distance calculations which have been proven to be very effective at detecting 
matches between known phishing and legitimate sites [23, 29]. The main issue with both of these methods being the load 
that they put on a system which restricts them from scaling. Comparisons done using these systems range from .02 to 
11.2 seconds per page while using up to 512 MB of RAM. Our method is able to process each page on average within 4  
seconds using less then 32MB of RAM. Additionally our design easily facilitates simultaneous processing of pages.

5. CONCLUSIONS AND FUTURE WORK

This paper has discussed the groundwork for a method and tool that can detect phishing sites. We have promising initial 
results  comparing known phishing sites and their legitimate counterparts. We were able to find a number of phishing 
sites from a live dataset and we also gained critical insight into how to effectively and efficiently gather, format, and 
analyze, this social data. 

As this work has matured, we have continued building on our general social media analytic collection and analysis 
process. To date, we have improved our collection process and storage method to the point where we are consuming and 
storing upwards of 70 Million messages a day. In our current work includes the creation of routines that automatically 
find correlations between potential  phishing pages and known trusted sites.  Specifically,  we use cluster analysis to 
identify clusters of pages with similar characteristics. 

We are in the process of completing the missing pieces of overall analysis architecture to enable full scale, real-time 
analysis of the Twitter data feed. Specifically, we are completing the automated characteristic comparison routines as 
well as the alerting functionality as illustrated in Figure 1. In addition we plan to implement a true multi-threaded design 
for simultaneous processing of pages which will replace our current parallel page processing instance launching code.  

We are also  working on cluster analysis software that will identify the closest matches in the whole data set without 
requiring a legitimate site to match against.

As we continue this work we intend on implementing functions for dealing with inconsistent page load times. Currently 
we stop trying to process a page after 3000ms however in some select cases pages may need more time to load. We  
intend to implement a system whereby pages that have not loaded after 3000ms will be handed off to a child process that 
will continue to wait an additional period of time. This will stop a single long loading page from slowing down the rest  
of our analytic process. 
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