
A Method For The Automated Detection Of Phishing Websites
Through Both Site Characteristics And Image Analysis

Joshua S. White, Jeanna N. Matthews, John L. Stacy

Clarkson University, Potsdam, New York 13699
{whitejs, jnm, stacyjl} @clarkson.edu

Abstract:
Phishing website analysis is largely still a time-consuming manual process of discovering potential
phishing sites, verifying if suspicious sites truly are malicious spoofs and if so, distributing their URLs
to the appropriate blacklisting services. Attackers increasingly use sophisticated systems for bringing
phishing sites up and down rapidly at new locations, making automated response essential. In this
paper, we present a method for rapid, automated detection and analysis of phishing websites. Our
method relies on near real-time gathering and analysis of URLs posted on social media sites. We fetch
the pages pointed to by each URL and characterize each page with a set of easily computed values
such as number of images and links. We also capture a screen-shot of the rendered page image,
compute a hash of the image and use the Hamming distance between these image hashes as a form of
visual comparison. We provide initial results demonstrate the feasibility of our techniques by
comparing legitimate sites to known fraudulent versions from Phishtank.com, by actively introducing
a series of minor changes to a phishing toolkit captured in a local honeypot and by performing some
initial analysis on a set of over 2.8 million URLs posted to Twitter over a 4 days in August 2011. We
discuss the issues encountered during our testing such as resolvability and legitimacy of URL's posted
on Twitter, the data sets used, the characteristics of the phishing sites we discovered, and our plans for
future work.

Keywords: Phishing, Image Analysis, Characteristic Analysis, Social Media

1. INTRODUCTION

Phishing [1] is the act of convincing users to give up critical personal information, either through conversation or some
form of content manipulation. Most modern day phishing attacks occur by luring users into visiting a malicious web
page that looks and behaves like the original. Once there, the user, if convinced that the page is authentic, may give up
private information including authentication credentials or banking information. This information is typically used to
commit some form of identity theft or fraud.

The most common methods used today for the detection and analysis of phishing web sites are:

• Manual view and report services such as Phishtank.com [4]. This is by far the most common method
which first, requires actual users to find, identify, and report suspicious web-pages and second requires,
additional people to verify the status of reported pages.

• Correlating links in known SPAM email to phishing sites [2]. Industry standard SPAM email detection
techniques are used to identify SPAM email and then links from those emails are examined. Typical
examination includes looking for URL redirection, or a variety of DNS tricks that might signify a phishing
site. The emphasis is typically on examining characteristics of the URL itself. Unless a URL is malformed
or some other SPAM-like characteristic is identified, phishing sites are often not identified in this way.

• Crawler classification of websites. Pages themselves are examined for suspicious characteristics like
misspelled words, link obfuscation, right-click menu disabling, DNS redirection, etc. [3]. This method is
similar to our own in that it places a strong emphasis on fetching and analyzing the actual page rather than
just the URL. However, it looks for suspicious content in individual pages where we focus on identifying
groups of pages that would “look” the same to an unsuspecting user.

2. OUR METHOD

Our work takes inspiration from this manual process of finding pages that “look the same”. Specifically, we automate
some of what the human does to recognize duplication of an original page. To do this we analyze a webpage based on
some of its structural characteristics and based on the way it looks visually. Specifically, we record a number of page
markup characteristics including the page title text and number of links, images, forms, iframes and metatags.
Throughout the rest of this paper we will refer to this 5 tuple as a pages structural fingerprint. The image analysis
portion of this work is at it's simplest is done by setting a fixed dimension and quality setting for rendering a page within
a headless browser and then taking a page screen-shot. We compute a hash of the resulting image and compare the hash
values using the Hamming Distance equation. This process takes on average 4 seconds a page including software build-
up/tear-down time. To speed up the process further, we could prioritize image analysis for pages that with matches in
the most easily parsed/computed items from the pages markup.

Figure 1 shows a high-level overview of the full process. The first step is the real-time gathering of URL's from social
media sites like Twitter. We used a modification of the get_tweets.php script provided by the 140Dev Twitter tool [5] to
fetching the raw JSON version of each tweet and store it in a MySQL table. Next, we parse the tweets looking for
URL's. Since Twitter requires all URL's to begin with the standard “HTTP://” to be hot-linked it was as simple as
parsing the JSON data for that expression. We fetch the page content for each URL using PHP's LoadHTML and DOM
Object walk through functions to visit the site, load the HTML into memory and finally count up each of the specific
DOM objects. Each time a page has been parsed it is then logged in the master url_stats.csv file for later analysis. For
each new URL, we also use XVFB and CutyCapt to render the resulting page and capture a screenshot. Finally, we
compute a variety of hash values on the resulting image.

Figure 1: Phishing Detection Process Overview

2.1 Hash Values and Hamming Distance Image Analysis

In order to identify when two web sites look the same, we render the site, take a screen shot using CutyCapt and
compute a hash of the resulting image. We compare website images by calculating the Hamming distance [14] between
their hash values. Hamming distance detects the similarity of two equal strings that the exact same length. The resultant
number is the minimum set of substitutions that must occur from one string to the other to make them match. For
example, when comparing two 32bit MD5Sum's, the possible Hamming value would be in the range of 0 to 32 where 0
means they are identical and 32 means that every single bit is different. We experimented with a variety of hash
calculation methods including cryptographic hashes like MD5, SHA512 and pHash (Perceptual Hash). pHash is a
hashing algorithm specifically designed for fingerprinting multimedia files such as images that relies on discrete cosine
transformation (DCT) to reduce sampling frequency in the file [15].

File Name File pHash File MD5Sum File SHA512Sum Hamming
Score (pHash)

Hamming Score
(MD5Sum)

Hamming Score
(SHA512Sum)

clarkson-paypal-page-
phishing-site-
original.png

1844671081
7257652609

8b0914d7d2544
f97b6e7a36adad
92da1

95552b3e553530f5f00e476d1a6
4316d0f08fcc6a4d415fa77aafcd
9de248afe9613363056acdf0aa40
db4a3f5b19ac0eb2cce5b3a808d
794fb575aad000057c

0 0 0

clarkson-paypal-page-
phishing-site-rev2.png

1844671081
7257652609

d2b931f6b29bf7
dcb99601f7a7c7
d12b

4d39160800e9250ded72108cdb
14a73cd015f7a30d2d9e01de883
6ae5073ee179cd2800cd32ea9e1
90ffebe1dacd11ec364e26dd5147
faa77eb4a12191c67b69

0 8 38

clarkson-paypal-page-
phishing-site-rev3.png

1844671081
7257652609

b9858446a3f38
dd9e9116f545f3
1500f

c9d09715010886682aec120a29e
2135b0b3ea49474b9ff99504026
406ab7ac7ab73c3f9c570ee274d
014257e5ad95f5bf5d9cb18585f
45c080da400a4daff632

0 8 9

clarkson-paypal-page-
phishing-site-rev4.png

1844672840
8906826113

94b551da15320
573cd51b3ee7d
cbb7fa

8029e65c7294f6c8c317b8d136a
b399f04b318782c885dd16ab74b
20843eec0401b99b68154fbaf57
98844408414db255f7154e05695
90286a711c32137fc094

2 9 8

clarkson-paypal-page-
phishing-site-rev5.png

1844671081
6720798145

df78813010280
c2fde8f5e4270b
928ff

55e15dae72375e9e537aabccad7
6d04f85a13465846b750f85a2ae
5b9d95b78c255182f57a52a51d2
aab2b736b0179e59d4b2a601e29
1d43ff73e16b29e963b8

3 10 24

ezine-screenshot-same-
characteristics-as-
paypal.png

1583571382
2348909969

8e434d107b439
41c39ac4bda2c
806fbb

f3c52d2d4fe608cc6f500d661260
204a9c4fff9a06c24ad39513d67d
acff3ed08f5a4bdf93997f00dc7b
3f4d3775ee81cbed8eba961219fc
af1c5ec67b338886

19 1 9

Table 1: Comparison of Hashing Methods and Hamming Distance Calculations on Captured Phishing Site

In Table 1, we describe a set of experiments to compare these three hashing algorithms on a sample PayPal phishing site
captured in a local honeypot in December 2007. We introduced a series of minor changes to the site and computed the
Hamming difference relative to the original site for each hash algorithm. Our first change was minor modifications in the
page text. Specifically, we removed all cases of the word “the” from the page. Relative to the original image, the
Hamming Distance for the MD5 hashes was 3, while the SHA512Sum resulted in a distance of 0 and the pHash distance
was 0. After completely replacing a few sentences, we began to see larger distances with the SHA512Sums as well.
However, even with a significant portion of the text changed and the color of the PayPal logo altered slightly we still
received a Hamming Distance of 0 using pHash. It was not until we changed the color of multiple items on the page and
rearranged things that we started to see higher distance values. This means that a phishing site would need to
significantly different from the original page that it was trying to spoof for it to go undetected with the pHash technique.

2.2 Method Verification Using Phishtank

We performed additional validation of our method using known phishing sites. Specifically, we identified 5 fraudulent
sites found on Phishtank.com [4] and matched them with their legitimate counterparts. We deliberately chose sites that
had not yet been taken down so that we would be able to run our analysis tools on them.

Table 2 shows the results of our page component parsing script on these 5 fraudulent sites and their legitimate
counterparts. We matched 4 of 5 phishing pages to their legitimate counterparts using only the structural statistics we
recorded. Adding the comparison of the screen-shot captures allows us to identify all 5. Other tools for used for phishing
website identification report success rates in the range on average between 20% and 60% effective with only 1 tool in
our literature review reaching nearly 90%. In addition the average false-positive rate for these tools is 42% [16, 17, 18].

(F)raud /
(L)egit

URL Structural
Fingerprint

Page Title pHash Value Hamming
Score

EBAY
Fraudulent

http://fgn218.internetdsl.tpnet.pl/ws/eBayISAPI/SignIn.php?
&errmsg=8&pUserId=&co_partnerId=2&siteid=0&pageType=-
1&pa1=&i1=1&UsingSSL=1&k=1&bshowgif=0&favoritenav=
&ru=http%3A%2F%2Fwww.ebay.com%2F&pp=

22,5,3,0,1 Welcome to
eBay -
 Sign
in

184150952480928
93183

0

EBAY
Fraudulent

http://fgn218.internetdsl.tpnet.pl/track.php 22,5,3,0,1 Welcome to
eBay -
 Sign
in

184150952480928
93183

0

EBAY
Legitimate

https://signin.ebay.com/ws/eBayISAPI.dll?
SignIn&UsingSSL=1&pUserId=&co_partnerId=2&siteid=0&ru
=http%3A%2F%2Fmy.ebay.com%2Fws%2FeBayISAPI.dll
%3FMyEbayBeta%26MyEbay%3D%26gbh%3D1%26guest
%3D1&pageType=3984

22,5,3,0,1 Welcome to
eBay - Sign
in

184150952480928
93183

0

CIBC
Fraudulent

http://www.shop-cafe.ru/ 24,10,2,0,1 RETURNED
NOTHING

137717613698943
38304

0

CIBC
Legitimate

https://www.cibconline.cibc.com/olbtxn/authentication/SignOn.c
ibc

24,10, 2,0,1 RETURNED
NOTHING

137717613698943
38304

0

HALIFAX
Fraudulent

http://www.njcabinet.com/old_stuff/data/tmp/Halifax/index.html 21,2,2,0,7 Welcome to
online
banking

167161696874898
23731

0

HALIFAX
Legitimate

https://www.halifax-online.co.uk/_mem_bin/formslogin.asp?
source=halifaxcouk&simigvis=Mi43Ni4yNTMwMTAyMzgzOT
Q3MS4xMzEyMDQ2OTEwMjAz*

24,2,2,0,7 Welcome to
online
banking

167161696874898
23731

0

Paypal
Fraudulent

http://si4r.com/_paypal.co.uk/webscr.html?
cmd=SignIn&co_partnerId=2&pUserId=&siteid=0&pageType=
&pa1=&i1=&bshowgif=&UsingSSL=&ru=&pp=&pa2=&errms
g=&runame=

0,7,1,0,2 RETURNED
NOTHING

167161696874898
31923

1

Paypal
Legitimate

https://www.paypal.com/cgi-bin/webscr?cmd=_login-
submit&dispatch=5885d80a13c0db1f8e263663d3faee8d1e83f46
a36995b3856cef1e18897ad75

27,3,0,0,2 Redirecting -
Paypal

184397071904318
36096

0

Table 2: Known Phishing/Non-Phishing Site Characteristics

Our experience with these five sites illustrates the importance of using both the easy to compute structural characteristics
and the image comparison via hash value. Four of the five fraudulent sites can be detected based on structural
characteristics alone. Due to the nature of how some sites are copied and used for phishing, we won't always have exact
matches based purely on page markup characteristics. To illustrate this we look at the analysis of Paypal and its cloned
site in Table 2. In this case the fraudulent site was of very poor quality as set against phishing standards. The site did not
replicate any of the functionality of the page it was spoofing other then the login form. As such, none of the other page
characteristics matched up. Yet, when we look at the output of our image capture as shown in Figure 2, we can see that
the page still pulls off the “authentic” look part of the site1.

1The Page Title field of the fraudulent Ebay page is formatted differently then the legitimate Ebay Sign-in page. This is easily overcome by removing
the special HTML encoding characters.

3. ANALYSIS OF LINKS FOUND IN TWITTER DATA

After verification of techniques we moved on to the larger “wild” data set of unknown URLs. Specifically, we look for
URLs in Twitter posts. Previous studies have shown that 12% of all URL's posted on Twitter may be malicious. [6,7]

A real-time source of candidate phishing sites is increasingly important as attackers shorten the time a given phishing
site is active before the content is moved onto a new compromised host. We also chose Twitter for the collection of
URLs because it allowed for real-time interaction. Our work aims to shorten that life-cycle by providing near real-time
feedback and thus needs a way to bring URL's in that are relevant and live at the time of processing. Traditional crawlers
are not up to the task and we do not have the resources of companies like Google at hand. With their real-time API,
Twitter offers one of the best means of potentially malicious near-real-time URLs.

We captured 81.9 GB of raw JSON data representing roughly 4 days of Twitter traffic including a total of 19,624,335
tweets. Table 3 shows the details of the dataset. In our initial experiments, we were able to capture 2,813,476 unique
URL's. However, in practice we were only able to process 1,829,531 via our page characteristic technique. This was due
to a large number of URL's being un-resolvable by the time we processed them. It is difficult to know in all cases why a
URL was unresolvable, but we can identify a number of factors besides phishing sites that have been taken down by
attackers. In Section 3.2, we elaborate on these other reasons URLs were unresolvable including typos and unavailable
URL shortening services.

Duration 7-25-2011(13:15:45 EST) --> 7-29-2011(11:01:32 EST)

Number of Tweets Captured 19,624,335

Number of URLs Within Tweets Captured 3,902,699

Number of Unique URLs From Total Tweet Dataset 2,813,476

Number of URLs Processed For Page Characteristics 1,829,531

Table 3: URL Data-set Collected From Twitter

At this time we have not had the opportunity to sufficiently analyze the captured URL dataset from Twitter. In the future
we are interested in measuring the frequency at which legitimate URL's versus Phishing URL's are posted, and how
many URLs come from individual users and measuring the number of intentional versus accidental posting of Phishing
URLs. In the following sections, we elaborate on some of the challenges we faced in processing and characterizing links
found in Twitter data.

Figure 2: Example Image Capture of EBay.Com Phishing Page Using ImageMap

3.1 Data-Collection Issues

The total size of captured and stored data from the Twitter API is even larger than the raw feed after the JSON stream is
decoded. We tried a number of popular database systems like MySQL, Hadoop and Cassandra. With each system tried,
we ran into substantial problems in achieving fast access to million+ entry tables. In this prototype, we used MySQL and
divided logical database tables into roughly 9 hour increments to allow for smaller table sizes with a limited number of
entries in each. After decoding and importing the 81.9 GB of JSON data into MySQL, this data was slimmed down to
27.3 GB of pure content, which shows how much overhead is included in each tweet. After parsing the MySQL database
and creating a new table of just URL's, we ended up with 193.5 MB of usable links.

3.2 URL's Processed for Page Characteristics Issues

From Table 3, we note that the number of URLs that were processed for page characteristics was inconsistent with the
number of unique URLs gathered. In this section, we discuss some of the reasons for this difference:

 After manual investigation, it appears that many of the URLs are bad/incomplete from the moment they are
posted. For example, a URL might end with .ocm instead of .com. We suspect simple typos. Without analyzing
all of the URLs, we can't put a percentage on the number of typographical error related failures across the entire
data set, but an evaluation of 1000 non processable URL's revealed that roughly 20% were due to typographical
error.

 The next largest contributor was expired or non-working shortening services. A great example of this was
goo.gl which is fairly new at the time of this research. The goo.gl shortening service is a google labs program
that has been plagued by outages. At the time of the 1000 URL manual analysis, failed expand URL shortening
caused roughly 20% of all the non-processed pages.

 The remaining 60% of non-processed manually examined URLs were simply unreachable in one way or
another, some had unresolvable DNS entries and some returned “page not found” errors. As we discuss later,
we used a page load time of 3000 ms and suspect that some tuning of that value may be necessary. In future
work, we plan to explore a wider range of time out values and investigate the cause of truly unresolvable URLS
in more detail.

3.3 URL's as Images & Image Collection Issues

Image collection was done using a combination of two tools, CutyCapt [8] and XVFB [9]. The first of which, CutyCapt,
takes screen-shots of a fully loaded web-pages by launching a Webkit based GUI-less web-browser. XVFB was used to
provide CutyCapt with a virtual frame buffer, since the server this entire processes resided on did not have an X server
installed. The problems involving these two pieces of software are as follows:

 CutyCapt can only process one URL at a time and launches a new instance of its self every time it does so. On a
headless system, this requires XVFB to launch a virtual X session every time CutyCapt processes a URL. In
conjunction with the additional time required to launch, there is an associated tear down time for that X session.
If a delay is not included at the end of the CutyCapt URL parsing loop, then an X session collision occurs and
will keep occurring for every link read into CutyCapt until the X session fully closes. To deal with the previous
issue of X session build up and tear down time, we attempted to run multiple instances of XVFB and CutyCapt
simultaneously on different groups of the URLs. The basic concept of this was to split the URL input file into
equal pieces and when requesting the Image capturing script we would then increment the virtual display
number in XVFB. Each instance could then append their results to the output CSV file. However this proved
unreliable since XVFB uses such a high percentage of system resources when starting up. More then two
instances of XVFB running at one time slowed the Quad-Core test system down to a crawl.

 Website load time was the last major contributing factor to the limited number of URLs processed for image
comparison. We put in a hard limit of 3000ms for a page to load before CutyCapt would simply stop and move
onto the next, this proved insufficient for many pages. There is of course a trade-off between the timeout value
and our ability to process all URLs in real-time.

In the future, we would like to explore modifying CutyCapt to add multi-threaded support and X session reuse to the
code base. By reusing a single X session we would reduce the multiple seconds of latency that is incurred each time that
build up and tear down occurs. Adding multi-threaded support that incorporates virtual X session reuse would be even
more beneficial. We would be able to increase load time wait in CutyCapt to support slow sites, without waiting for one
site to complete, before processing another.

3.4 Twitter Link Analysis Results

Now we can look at the analysis of our known fake/non-fake Ebay pages as outlined in Table 4. Ebay is a great example
for this work since it at the moment it is one of the top spoofed sites. [10,11] Table 3 shows significant correlation of
both the structural site characteristics and image hashes between the site characteristics between the fake pages pointed
to in our Twitter data set and the legitimate Ebay site. Table 4 shows the page screen-shots as well as pHash values of
the real and fake Ebay login Pages. Notice that the hashes are identical for the legitimate and fraudulent sites.

The system that we have build currently allows for exact match searching, that is, results that have an exact characteristic
match and/or exact distance score. In addition we have the ability to search for other combinations of characteristic
measurements and specific distance scores. This allows us to search on less precise matches. We used this to search for
exact matches of the top 5 most phished sites and Table 5 lists the number of exact matches for each. This could also be
used by the administrator of any web site to search for matches to their site.

Table 6 also lists the characteristics of what has been reported as the top most copied main site pages in the last year.
These characteristics were used to complete a basic search of the data set.

Status URL Screen-shot Structural
Fingerprint

pHash

Fake http://fgn218.internetdsl.tpnet.pl/ws/eBayISAPI/SignIn.ph
p?
&errmsg=8&pUserId=&co_partnerId=2&siteid=0&pageT
ype=-
1&pa1=&i1=1&UsingSSL=1&k=1&bshowgif=0&favorite
nav=&ru=http%3A%2F%2Fwww.ebay.com%2F&pp=

22,5,3,0,1 1841509524809289
3183

Fake http://fgn218.internetdsl.tpnet.pl/track.php 22,5,3,0,1 1841509524809289
3183

Legitimate https://signin.ebay.com/ws/eBayISAPI.dll?
SignIn&UsingSSL=1&pUserId=&co_partnerId=2&siteid=
0&ru=http%3A%2F%2Fmy.ebay.com%2Fws
%2FeBayISAPI.dll%3FMyEbayBeta%26MyEbay%3D
%26gbh%3D1%26guest%3D1&pageType=3984

22,5,3,0,1 1841509524809289
3183

Table 4: Phishing and Non-Phishing Site Image Hashing Comparison

Using just the structural characteristics, we found a number of false positives. For example, we found other links that
contained the same pattern of tag information, such as with Paypal's “71,6,3,0,3.” Interestingly, EzineArticles.com sub-
pages like: http://EzineArticles.com/6429341 use a strict format template that happens to have characteristic matches to
Paypal.com's landing page at the time of these experiments. However the addition of the screen-shot image information
correctly identifies this false positive.

http://EzineArticles.com/6429341w

Site Characteristic Map pHash Distance
Score

http://EzineArticles.com/6429341
71,6,3,0,3 15835713822348909969 24

http://www.paypal.com
71,6,3,0,3 18446677844303266811 0

Table 5: False Positive Elimination Using Hash Distance Scoring

As Table 6 shows, when comparing the structural characteristics of two distinctly different pages we can not distinguish
any difference. However when adding in the pHash value of the pages and using them to calculate Hamming distance we
can see that indeed the pages do not match.

URL Structural
Fingerprint

Phash Value Sites With
Matching
Structural

Characteristics

Sites With
Exact Match
pHash Values

Sites With
Hamming

Distance Scores
< 10 (Highly

Related)

http://www.facebook.com 20,1,1,0,3 35046933135104 16 0 0

http://www.us.hsbc.com/1/2/
3/personal?home=personal

72,16,2,1,6 18446744039097171959 10 0 0

http://www.paypal.com 71,6,3,0,3 18446677844303266811 172 0 1

http://www.irs.gov 85,27,2,0,2 3607948993784217088 0 0 0

http://us.battle.net/wow/en 96,6,1,0,2 9259558749612483190 61 0 0

Table 6: Markup Characteristics of “Most Spoofed Sites” Landing Pages

4. Related Work

Anti-Phishing research has been done for a number of years and falls into a number of categories. A.P.E Rosiello, et. al.
define these categories as Email-Based, Blacklist-Based, Visual-Clue-Based, Website-Feature-Based, and Information-
Flow-Based. The method employed in their work could be best categorized as Website Feature Based and consists of a
string search technique which identifies the DOM objects within a page and builds a tree of those objects. This tree is
directly compared to those of known legitimate pages. When a page claims to be a specific site, all DOM trees are
compared with a known good sample to look for dissimilarities [19]. This approach works as a client side browser plugin
and thus is useful on an individual user basis but is not a conducive method for broader analysis.

To date the most widely deployed approaches for protecting users from Phishing attacks are Blacklist-Based. Blacklist-
Based tools that enable them to be warned away from sites that are known to be malicious but have yet to be taken
down. These tools rely on known blacklisting services such as Phishtank.com that rely on the submission of suspicious
URLs for analysis. After a suspicious URL is submitted, a variety of techniques are employed to triage the link including
suspicious DNS reputation, suspicious URL format, URL containment of other domain names in a directory field, and
actual matching of known URL terms using Lexical analysis [13, 20, 24, 25, 28]. These methods reduce but do not
eliminate the manual work required. Most have high false positive detection rates and all methods get the URL's that
they are analyzing from other services which feed them primarily malicious or at least suspicious URL's to analyze.
They have not been shown to be effective at finding malicious URLs in a a large live data set of predominately
legitimate URLs.

http://us.battle.net/wow/en
http://www.irs.gov/
http://www.paypal.com/
http://www.us.hsbc.com/1/2/3/personal?home=personal
http://www.us.hsbc.com/1/2/3/personal?home=personal
http://www.facebook.com/
http://www.paypal.com/
http://EzineArticles.com/6429341w

Google has developed and deployed a hybrid approach. Their system relies on both Google's own page ranking system
and an email SPAM filtering system to per-identify potentially malicious pages before analysis [26]. They also apply a
machine learning classifier which considers the characteristics of the URL and the website or message content. While
this method works well in Google's own environment, it is unreasonable to assume that an individual institution, or even
government would be able to deploy their own version of it given Google's unique place in the Internet infrastructure.

Some other methods for detecting phishing websites that are related to our own Website-Feature-Based and Visual-Clue-
Based. C. Ludl, et. al. presented evaluation results of a number of anti-phishing tools and determined that the best relied
on both blacklist sites that used manual reviewers and those that did some sort of analysis using specific page
characteristics. We validate our choices of page characteristics in our own method against those stated in their work [22].
We further validate our method by considering the effectiveness of methods such as the use of Page Color Histogram
comparison matching and Color Vector Distance calculations which have been proven to be very effective at detecting
matches between known phishing and legitimate sites [23, 29]. The main issue with both of these methods being the load
that they put on a system which restricts them from scaling. Comparisons done using these systems range from .02 to
11.2 seconds per page while using up to 512 MB of RAM. Our method is able to process each page on average within 4
seconds using less then 32MB of RAM. Additionally our design easily facilitates simultaneous processing of pages.

5. CONCLUSIONS AND FUTURE WORK

This paper has discussed the groundwork for a method and tool that can detect phishing sites. We have promising initial
results comparing known phishing sites and their legitimate counterparts. We were able to find a number of phishing
sites from a live dataset and we also gained critical insight into how to effectively and efficiently gather, format, and
analyze, this social data.

As this work has matured, we have continued building on our general social media analytic collection and analysis
process. To date, we have improved our collection process and storage method to the point where we are consuming and
storing upwards of 70 Million messages a day. In our current work includes the creation of routines that automatically
find correlations between potential phishing pages and known trusted sites. Specifically, we use cluster analysis to
identify clusters of pages with similar characteristics.

We are in the process of completing the missing pieces of overall analysis architecture to enable full scale, real-time
analysis of the Twitter data feed. Specifically, we are completing the automated characteristic comparison routines as
well as the alerting functionality as illustrated in Figure 1. In addition we plan to implement a true multi-threaded design
for simultaneous processing of pages which will replace our current parallel page processing instance launching code.

We are also working on cluster analysis software that will identify the closest matches in the whole data set without
requiring a legitimate site to match against.

As we continue this work we intend on implementing functions for dealing with inconsistent page load times. Currently
we stop trying to process a page after 3000ms however in some select cases pages may need more time to load. We
intend to implement a system whereby pages that have not loaded after 3000ms will be handed off to a child process that
will continue to wait an additional period of time. This will stop a single long loading page from slowing down the rest
of our analytic process.

6. REFERENCES

[1] The Anti-phishing Working Group, http://www.Antiphishing.org

[2] Tyler Moore, Richard Clayton, and Henry Stern. 2009. Temporal correlations between spam and phishing
websites. In Proceedings of the 2nd USENIX conference on Large-scale exploits and emergent threats: botnets,
spyware, worms, and more (LEET'09). USENIX Association, Berkeley, CA, USA, 5-5.

[3] Maher Aburrous, M. A. Hossain, Keshav Dahal, Fadi Thabtah, "Predicting Phishing Websites Using
Classification Mining Techniques with Experimental Case Studies, "Information Technology: New
Generations, Third International Conference on, pp. 176-181, 2010 Seventh International Conference on
Information Technology, 2010

http://www.Antiphishing.org/

[4] Report a Phishing website, http://www.phishtank.com

[5] Twitter to MySQL Tool, http://140dev.com/free-twitter-api-source-code-library/twitter-database-server/

[6] Bruce Prince, “Twitter Fights Phishing / Malware with Link Scanning Service”, Eweek.com,

http://www.eweek . com /c/a/Security/Twitter-Fights-Phishing-Malware-With-Link-Scanning-Service- 556715/ ,
3/10/2010

[7] Elinor Mills, “Kaspersky Tool Detects Malware in Twitter Links”, ZDNet.com,

http://www.zdnet.com/news/ kaspersky- tool-detects-malware-in-twitter-links/358596 , October 29, 2009

[8] CutyCapt, http://cutycapt.sourceforge.net/

[9] XVFB, http://www.x.org/releases/ X11R7.6/ doc/man/man1 /Xvfb.1.xhtml

[10 http://www.esecurityplanet.com/views/ article.php/ 3875866/Top-Ten-Phishing-Facts.htm

[11] http://liambean.hubpages.com/hub/DNS-Report-The-Most-Banned-Spoofed-and-Sought-After- Sites

[12] J., Hellerstein, “The Commoditization of Massive Data Analysis,” Oreilly Radar, Nov. 2008.
http://radar.oreilly.com/2008/11/the-commoditization-of-massive.html

[14] C. Aggarwal, J. Wolf, P. Yu, “A New Method for Simularity Indexing of Market Basket Data,” IBM T. J.
Watson Research Center, SIGMOD 99, Philadelphia PA, 1999, ACM 1-58113-084-8/99/05

[13] Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feamster. 2010. Building a
dynamic reputation system for DNS. In Proceedings of the 19th USENIX conference on Security (USENIX
Security'10). USENIX Association, Berkeley, CA, USA, 18-18.

[15] Zauner, Christoph “Implementation and Benchmarking of Perceptual Image Hash Functions,” Master's thesis,
Upper Austria University of Applied Sciences, Hagenberg Campus, 2010.

[16] Yue Zhang, Serge Egelman, Lorrie Cranor, and Jason Hong. Phinding Phish: Evaluating Anti-Phishing tools. In
NDSS ’07: Proceedings of the 14th Annual Network and Distributed System Security Symposium, February
2007.

[17] Min Wu, Robert C. Miller, and Simson L. Garfinkel. Do security toolbars actually prevent phishing attacks? In
CHI ’06: Proceedings of the SIGCHI conference on Human Factors in computing systems, pages 601–610,
New York, NY, USA, 2006. ACM.

[18] Liu Wenyin, Ning Fang, Xiaojun Quan, Bite Qiu, and Gang Liu. 2010. Discovering phishing target based on
semantic link network. Future Gener. Comput. Syst. 26, 3 (March 2010), 381-388.
DOI=10.1016/j.future.2009.07.012 http://dx.doi.org/10.1016/j.future.2009.07.012

[19] A. P. E. Rosiello, E. Kirda, C. Kruegel, F. Ferr, P. D. Milano, and P. D. Milano, “A layout-similarity-based
approach for detecting phishing pages,” in SecureComm ’07: Proceedings of the 3rd IEEE International
Conference on Security and Privacy in Communication Networks, 2007.

[20] S. Garera, N. Provos, M. Chew, and A. D. Rubin, “A framework for detection and measurement of phishing
attacks,” in WORM ’07: Proceedings of the 5th ACM Workshop on Recurring Malcode, 2007.

[21] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: a content based approach to detecting phishing web sites,” in
WWW ’07: Proceedings of the 16th international conference on World Wide Web. New York, NY,
USA: ACM, 2007, pp. 639–648.

[22] C. Ludl, S. McAllister, E. Kirda, C. Kruegel, and C. Kruegel, “On the effectiveness of techniques to detect
phishing sites,” in DIMVA ’07: Proceedings of the 4th International Conference on Detection of Intrusions,
Malware, and Vulnerability Assessment, 2007, pp. 20–39.

http://radar.oreilly.com/2008/11/the-commoditization-of-massive.html
http://liambean.hubpages.com/hub/DNS-Report-The-Most-Banned-Spoofed-and-Sought-After-Sites
http://liambean.hubpages.com/hub/DNS-Report-The-Most-Banned-Spoofed-and-Sought-After-
http://www.esecurityplanet.com/views/article.php/3875866/Top-Ten-Phishing-Facts.htm
http://www.esecurityplanet.com/views/article.php/
http://www.esecurityplanet.com/views/
http://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
http://www.x.org/releases/X11R7.6/doc/man/man1
http://www.x.org/releases/X11R7.6/
http://www.x.org/releases/
http://cutycapt.sourceforge.net/
http://www.zdnet.com/news/kaspersky-tool-detects-malware-in-twitter-links/358596
http://www.zdnet.com/news/kaspersky-
http://www.zdnet.com/news/
http://www.eweek.com/c/a/Security/Twitter-Fights-Phishing-Malware-With-Link-Scanning-Service-556715/
http://www.eweek.com/c/a/Security/Twitter-Fights-Phishing-Malware-With-Link-Scanning-Service-
http://www.eweek.com/
http://www.eweek.com/
http://www.eweek/
http://140dev.com/free-twitter-api-source-code-library/twitter-database-server/
http://www.phishtank.com/

[23] E. Medvet, E. Kirda, and C. Kruegel, “Visual-similarity-based phishing detection,” in SecureComm ’08:
Proceedings of the 4th IEEE International Conference on Security and Privacy in Communication Networks,
2008.

[24] J. Ma, L. K. Saul, S. Savage, G. M. Voelker, and G. M. Voelker, “Identifying suspicious urls: an application of
largescale online learning,” in ICML ’09: Proceedings of the 26th International Conference on Machine
Learning, 2009, p. 86.

[25] A. Blum, B. Wardman, T. Solorio, G. Warner, and G. Warner, “Lexical feature based phishing url detection
using online learning,” in AISec ’11: Proceedings of the 3rd ACM workshop on Artificial intelligence and
security, 2010, pp. 54–60.

[26] C. Whittaker, B. Ryner, M. Nazif, and M. Nazif, “Largescale automatic classification of phishing pages,” in
NDSS ’10: Proceedings of the 17th Annual Network and Distributed System Security Symposium, 2010.

[27] G. Xiang, J. I. Hong, C. P. Ros, L. F. Cranor, and L. F. Cranor, “Cantina+: A feature-rich machine learning
framework for detecting phishing web sites.” in ACM Trans. Inf. Syst. Secur., 2011, p. 21.

[28] M. Khonji, Y. Iraqi, A. Jones, and A. Jones, “Lexical url analysis for discriminating phishing and legitimate
websites,” in CEAS ’11: Proceedings of the 8th Annual Collaboration, Electronic messaging, Anti-Abuse and
Spam Conference, 2011, pp. 109–115.

[29] A. Y. Fu, W. Liu, and X. Deng, “Detecting phishing web pages with visual similarity assessment based on earth
mover’s distance (emd),” 2006, pp. 301–311.

	2.1 Hash Values and Hamming Distance Image Analysis
	2.2 Method Verification Using Phishtank
	3.1 Data-Collection Issues
	3.2 URL's Processed for Page Characteristics Issues
	3.3 URL's as Images & Image Collection Issues
	3.4 Twitter Link Analysis Results

