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Abstract—This paper evaluates a mechanism for applying 
machine learning to identify over-constrained IaaS virtual 
machines (VMs) in preparation for load balancing or VM 
migration. Herein, over-constrained VMs are defined as those who 
are not given sufficient system resources to meet their workload 
specific objective functions. To validate our approach, a variety of 
workload-specific benchmarks inspired by the most common 
Infrastructure-as-a-Service (IaaS) cloud workloads were 
implemented. These workloads were run while regularly sampling 
VM resource consumption features exposed by the hypervisor. 
Datasets were curated into nominal or over-constrained according 
to per-workload objective functions. These per-VM datasets are 
used to train machine learning classifiers to determine virtual 
machine over-constraint rules based on workload one-time log 
analysis. These rules which are learned when the VM is run in one 
environment are then transferred with the VM to other 
environments to determine if they are effective for identifying 
over-constraint in the new environments as well. Our approach is 
advantageous because VM creators or software distributors may 
train a runtime over-constraint classifier that can be applied by 
future users of the VM image. The VM creators often have unique 
knowledge of expected VM performance and experience in 
performance tuning that users of the VM lack. Key contributions 
of this work include: demonstrating which VM resource 
consumption metrics (features in machine learning) prove most 
relevant to learned decision trees, and a discussion of the 
techniques required to generalize this approach across hosts while 
limiting required up front training expenditure to a single VM and 
host. Other contributions include a rigorous explanation of the 
differences in learned rulesets as a function of feature sampling 
rates, and an analysis of the differences in learned rulesets as a 
function of VM workload variation. We demonstrate that 1Hz 
sampling was sufficient while 1/60 Hz sampling was insufficient in 
all cases. An analysis of feature correlation matrices and 
corresponding generated rule sets is provided that demonstrates 
that individual features comprising rule sets tend to show low 
cross-correlation (below 0.4) while no individual feature shows 
high direct correlation with classification. We demonstrate 
workload-specific error percentages below 2.4% with a mean 
error across workloads of 1.43% (and strong false negative bias) 
for a variety of representative cloud workloads tested and ruleset 
portability across hosts.  

Keywords—virtual machines; cloud-computing; IaaS 
management; decision trees; support vector machines; binary 
classification; cloud provisioning; resource allocation. 

I.  Introduction 
There are numerous challenges to solve when implementing 

highly elastic VM resource allocation schemes. Methods for 

inferring data about a VM under observation can be divided into 
in-band and out-of-band approaches. In-band approaches 
require installing one or more agents that monitor and, when 
necessary, react to the changing parameters of the system under 
study. Generally, existing systems require the VM operator to 
install a software agent in the VM, that can be used to gather 
information and drive a monitor-analyze-remediate 
management loop capable of making resource allocation 
decisions. Out of band monitoring, or agentless monitoring, is 
simpler to install and administer (centralized on the hypervisor 
not the VMs) and does not restrict the VM owner by imposing 
an agent or any other requirements into their VM. The lack of 
interference or imposed requirements on IaaS cloud VMs cannot 
be understated, as this cloud type caters to arbitrary OS images.  
 

A. In-Band Monitoring and Agents  

An in-band approach works best for the type of cloud 
computing known as Application-as-a-Service (AaaS), in which 
a single application is developed, tuned, and sold repeatedly to 
customers who remotely access the VM application. In this 
model, installing agents to monitor resource availability and VM 
system performance is an attractive solution since the provider 
of the service has full access to the virtual machine. In addition, 
the VM creator has the requisite domain specific knowledge 
about the application to effectively instrument systems to detect 
resource over-constraint. Since a single application is tuned and 
resold as a service, the cost of developing custom agents on a 
per-application basis is amortized across all instances sold, 
making it cost effective and practical due to economies of scale 
at high volume. AaaS cloud computing environments use agent 
derived metrics to ensure that some service level agreement 
(SLA) has been met, and if not, consider the machine to be 
lacking in resources.  

However, monitoring VMs for the purposes of performance 
management or SLA compliance is a nontrivial task. The clear 
majority of application performance indicators require 
application-level knowledge. A common solution for 
performance instrumentation is a framework that application 
authors can extend if, and only if, they have access to the source 
code of the software to be monitored. An example of this type 
of architecture is the Application Response Measurement 
(ARM) standard [ARM].  

In-band monitoring systems are not always possible, as they 
often require intrusive instrumentation, ongoing computational 
burden in the VM (especially with heavy weight agents), and 
substantial development time. In general, agent-based solutions 



present a problem in the context of Infrastructure-as-a-Service 
(IaaS) compute clouds. Also, most agent-based solutions are 
specific to a given operating system and/or specific user space 
application. This makes them of limited utility, since they are 
tightly coupled to the workload they monitor. Consider that an 
operating system under heavy load could potentially cause an 
agent running within it to starve for resources. This derivative 
effect of overloading the system which you are measuring 
reduces the effectiveness of this type of agent.  

In-band agents also suffer from several other drawbacks. 
They need to be written or customized for every workload 
(operating system and possibly also application). They increase 
potential security liabilities and are susceptible to attacks from 
within the monitored object. This model does not fit with the 
Infrastructure-as-a-Service model where a laissez-fare approach 
is generally required for the provisioned guest as per typical user 
agreement.  

B. Out-of-Band, Agent-less Monitoring  

Virtualization technology makes it possible to encapsulate 
an entire operating system or application instance within a 
virtual object that can then easily be monitored and manipulated 
without any knowledge of the contents or behavior of that object. 
This can be done out-of-band, using general-purpose 
hypervisor-based agents that are not affected by the behavior of 
the VM. Out-of-band agents suffer from reduced visibility into 
the behavior of the system being monitored and more limited 
response abilities because they can only treat the monitored 
machine as a black box. Out-of-band agent techniques would be 
considered prohibitively expensive in many previous dynamic 
workload balancing algorithms that deal strictly with short-lived 
processes (on the order of seconds to complete, such as MPI 
threads of execution) since management overhead is amortized 
over the length of the compute job. Relatively fast running 
compute jobs provide little time to amortize management 
overhead. However, the long running (indefinite execution) 
nature of VM processes indicate that the overhead associated 
with the measurement and detection needed for load balancing 
may be well worth the cost. In addition, for VM processes in 
enterprise computing environments, the potential consequences 
of a bad migration decision may justify using higher-overhead 
machine learning techniques if they ultimately yield better 
migration decisions.  

C. A Vigilant Approach  

Our work is inspired by Vigilant, a system based on out-of-
band monitoring in which researchers could determine the health 
and status of a virtual machine based solely on data observations 
that were external to the VM yet accessible by the hypervisor 
context [VIGILANT]. The experimental results from Vigilant 
show that certain types of problem conditions in VMs could be 
detected out-of-band with high accuracy while avoiding the 
pitfalls associated with in-band monitoring. Given that the set of 
data that can be collected by a hypervisor is inherently limited, 
it can be quite difficult to discriminate between ideal and non-
ideal behaving VMs. Vigilant was the first system to combine 
the ease of out-of-band data collection with machine learning to 
improve VM systems management, but while Vigilant focused 
on detecting a limited set of faults (such as halted on error 

conditions), our own work goes deeper and provides a 
generalization of their approach in autonomously detecting VM 
over-consolidation.  

The remainder of this section will explain in more detail the 
Vigilant approach as well as differentiate our own work from 
theirs. The system used in Vigilant monitored the hypervisor 
resource requests and VM utilization. A decision tree classifier 
machine learning method was used to analyze the readings at run 
time and detect problems in situ.  

A key element of the Vigilant system was their choice of 
decision tree classifier. They selected a decision tree for their 
work principally because of the training simplicity while also 
noting that the generated trees are easy to interpret by human 
observers. Perhaps surprisingly they also found their trained tree 
to be easy to implement with efficient runtime characteristics. 
However, the Vigilant authors did note that decision trees may 
not be ideal. They remark that in terms of classification power, 
a decision tree is generally considered to be a crude precursor to 
more modern tools such as support vector machines described in 
the text “Pattern Classification” by Duda et al [PATCLASS]. 
They go on to specifically state, that based on their experience, 
a decision tree is sufficiently powerful for analyzing VM 
runtime metrics. For further information about decision trees 
interested readers are referred to Mitchell’s “Machine Learning” 
[MITCHELL].  

Vigilant specifically targeted the detection of extremely high 
CPU utilization in kernel space. In one early experiment, they 
deployed several virtual Linux instances under the QEMU 
emulator [QEMU] with each running a different type of 
workload (web service, mail service, etc.) started at various 
times (to vary the overall load on the host system). In these 
experiments, the authors could classify, using a simple decision 
tree, the case where the workloads from different machines 
strain the host machine’s resources, as opposed to the case where 
only one of the virtual machines was under load. Though they 
omitted the details of that experiment, they indicated that their 
approach was applicable in diverse settings. Since QEMU 
underpins the operation of KVM virtual machines it makes sense 
that their preliminary results from those investigations should 
coincide with our own experimental data derived from KVM 
VMs.  
       Lastly, the authors of Vigilant warn that the application of 
machine learning to VMs has been chronically hobbled by the 
limited availability of labeled data that can be used to train the 
classifier to detect normal and abnormal operation.  

The work described herein varies from Vigilant in scope. 
This work aims to solve a different, broader problem, wherein a 
combination of multiple machine learning approaches is used to 
determine if autonomous, out-of-band, general over-constraint 
detection of VMs as a trigger for live-migration-based VM 
redistribution actions is possible. 
 
     D. Research Questions and Methodology  

Motivated by interest into autonomous over-constraint detection 
for VMs, this work seeks to answer the following open research 
questions: 
 



1. Which features or resource metrics are most useful in 
automatically identifying over-constraint in IaaS cloud 
computing environments? 

2. How do the rule sets of learned classifiers vary across 
common IaaS VM workload types? 

3. How portable are the learned classifiers? Specifically, can 
they be implemented such that an unmodified classifier can 
travel with the virtual machine to other hosts while retaining 
applicability?  

4. What are the differences in learned classifiers as a function of 
sampling frequency? Can one determine a lower bound on 
practical sampling intervals? 
 

The experimental methodology for determining VM over-
constraint by machine learning techniques was performed as 
described in the remainder of this section. First, a test server was 
configured with a KVM hypervisor. A virtual machine was then 
created from scratch and configured with a variety of 
middleware and workloads to be executed while under 
observation from the custom black-box VM monitoring 
software (running within the hypervisor context). Both the 
hypervisor OS and VM were fully up to date with current 
Ubuntu releases at the time of this experimentation. The 
workloads installed on the VM are enumerated in section A: 
Workload Overview while data collection methodology is 
explained in section B: Experimental Data Recording. Each 
workload was run, while data was collected from within the 
workload itself on the VM, as well as externally visible data 
collected at the hypervisor level. The combination of workload-
aware instrumentation, and black box data sets allow us to curate 
data for supervised machine learning, specifically we use the 
workload-aware instrumentation as the source for ground truth 
of whether the VM is over-constrained or not and then we learn 
to classify the VM as over-constrained using only the 
hypervisor-level data.  

A. Workload Overview 
When trying to classify a set of benchmarks to use as 

validation cases for our approach of machine learning over-
constraint in virtual machines, it is apparent that the breadth of 
workloads that are run in public clouds cannot be totally 
encompassed with a few, relatively specific, workload types. To 
properly examine the results of machine learning of VM over-
constraint, a series of representative workloads were identified. 
These workloads are surrogates for many of the common types 
of workloads that are run as cloud instances.  They span three 
major categories: HTTP, SQL, and Video Stream Simulation 
(File/IO dominated) workloads. 

1) HTTP-PHP Workload 
Workloads are executed against our HTTP and PHP 

installation by using the apachebench benchmark utility1. The 

                                                
1 To test our HTTP-based workload we performed a nominal installation of the Apache web server using the “apt-get install 
apache2” command. Once a minor change was made to the default configuration of Apache to silence a configuration-file 
related warning, we proceeded to install PHP to create more realistic web content to serve based on the observation that web 
pages are not simply static HTML. Once installed and configured, a simple PHP page was created to exercises the PHP runtime. 

 

individual apachebench runs were configured to consider 
unconstrained VM situations when 90% of page responses were 
received in less than 3 seconds. When more than 10 percent of 
the page responses take more than 10 seconds, we consider the 
HTTP VM server to be over-constrained. This threshold was 
selected based on the observation that web pages that fail to 
load almost instantly are considered too slow for production 
use. Consumers invariably become frustrated with latencies and 
go elsewhere, especially on mobile devices. Individual page 
responses taking longer than 5 seconds to return are tallied as 
errors. Using a wrapper script, the number of concurrent 
apachebench requests is scaled iteratively with 10, 20, 30, 40, 
50, 100, 150, 200, 250, 300, 350, 400, 500, up to 1000 
concurrent requests. Each iteration is run for 60 second 
durations before the next iteration proceeds to allow a slow 
ramp up of workload over time. The workload script logs start 
and end times of each iteration and aborts early, with a flag and 
time stamp, when an over-constraint situation occurs.  
 

2) Database Workload  
To execute a workload against the database instance, we 
installed the mysql-slapd utility was chosen to act as a workload 
generator2. Overload was defined based on any individual slapd 
invocation output file with an average query latency exceeding 
5 seconds. As was done in the HTTP benchmark script, the 
workload script logs start and end times of each iteration and 
aborts early, with a flag and time stamp, when an over-
constraint situation occurs.  
 

3) I/O Dominated Workloads (Simulated File Serving) 
To simulate file I/O oriented workloads performed in the 

cloud the filebench workload engine was selected and 
configured to emulate the file access patterns of a streaming 
video server. This configuration simulated new content creation 
(uploads) and aging out of older content in such a way as to 
simulate services like YouTube where videos are added, 
accessed for some period of major activity eventually being 
accessed infrequently as interest tapers off. The workload has 2 
components, one which creates new content to be served and 
one serving the content. The workload further distinguishes 
between actively served videos and those which are no longer 
active (aged content on disk and no longer in memory). The 
video writing thread continuously produces new files 
representing new user uploaded content. The number of threads 
representing streaming users was selected as the independent 
variable. The streaming thread count was manipulated over the 
range of [40-60], incrementing by one additional thread per test 
until the number of reported I/O operations per second fell 
below a configured threshold (300) for any given test. Each test 
ran with a given number of streaming threads for at least 60 
seconds before moving on to the next test iteration with more 

2 The freely available example database linked from the MySQL documentation page (dev.mysql.com/doc/index-other.html) 
was installed to provide a reasonable test data set for the MySQL instance workload. The database is described as "employee 
data (large dataset, includes data and test/verification suite).” After unzipping and importing the reference data set, it was 
checked manually by listing the table records on the SQL console. Since one table had almost half a million rows of populated 
data, the design criteria for a sufficiently large dataset was satisfied.  

 



active file streaming threads. Each of the file serving treads 
streams content from the active file set. The video replacement 
rate was set to one video replacement every 10 seconds.  

B. Experimental Data Recording 
To record the purest data set possible, each VM was 

exercised in isolation on an otherwise idle KVM host. First, our 
black-box monitoring software was started to monitor for any 
active KVM virtual machines without the VM running. We start 
our out-of-band data collection routines early to capture the full 
machine boot up process as well as a training workload interval 
and some idle interval, because the patterns of resource 
consumption at boot-up are often drastically different than when 
running an operational workload. Our intuition was that this full 
spectrum would lead to better trained classifiers with fewer false 
positives triggered by VM restarts while under management that 
would otherwise appear to demonstrate atypical workload 
profiles to an out-of-band monitoring utility. To ensure that this 
hypervisor-based monitoring component periodically scans a 
host seeking all KVM process parameters. For each KVM 
process detected on a given host, the logging component starts a 
dedicated thread to monitor and collect KVM VM-specific 
information. Each monitoring thread writes to its own distinct 
log file that is specific to the VM under observation. Consistency 
and continuity of log files is maintained by naming the files after 
the UUID of the VM. This approach allows VMs to be stopped, 
restarted, and moved to other hosts, while permitting merging of 
VM specific log files to curate larger VM resource data sets. 

After starting the hypervisor based monitoring software, the 
VM under experimentation was started, thus enabling the 
monitoring software to collect data throughout the VM boot up 
process until a quiescent state of activity (a few minutes after 
boot up completion). Next, an individual workload as described 
previously (e.g., the HTTP workload or the SQL workload, etc.) 
was started and run until an over-constraint condition was 
triggered based on the VM workload performance. The 
monitoring software continued to run until manually stopped, 
allowing the capture of quiescent and incidental activity (such as 
default background processed being triggered by the cron 
daemon etc.), as a further set of data to be considered nominal.  

After stopping the VM black-box monitoring software, a run 
log file, named unambiguously with the UUID of the VM was 
copied for archival and analysis. Values logged during black-
box hypervisor data collection are obtained principally by 
reading from the /proc virtual file system from the hypervisor 
instance. Samples were obtained at 1Hz frequency for each of 
the features monitored and are enumerated in Table 1 with a 
comprehensive explanation of feature derivation.  The log of 
feature observations is a simple comma separated value file with 
columns based on observed features (utilization) and each row 
corresponding to a single observation instant. Row entries were 
therefore time coherent and columns are feature coherent (an 
individual feature time series). Post-processing of the 
instrumented workload that contain performance satisfaction 
metrics in conjunction with the black box VM feature log 
(sampled by the hypervisor) allows the VM feature log to be 
annotated (or curated) as nominal or over-constrained. This 
annotated data set forms the basis of our supervised machine 
learning binary classification scheme.  

Table 1: Observed Kernel Features. Features labeled in bold showed 
observations in our out-of-band observation framework, while italicized 
feature names indicate no usable observations on our hypervisor platform. 

Feature Data Origin Description 

CPU /proc/[pid]/stat Amount of time that this process was scheduled in both 
kernel and user-blospace time as a percentage of all time 
elapsed.  

UT /proc/[pid]/stat Amount of time that this process has been scheduled in user 
mode, measured in clock ticks. This includes guest time, 
guest_time (time spent running a virtual CPU, see below), 
so that applications that are not aware of the guest time field 
do not lose that time from their calculations. Utime value 
from /proc/[pid]/stat   

ST /proc/[pid]/stat Amount of time that this process has been scheduled in 
kernel mode, measured in clock ticks. Stime value from 
/proc/[pid]/stat 

CUT /proc/[pid]/stat Amount of time that this process's waited-for children have 
been scheduled in user mode, measured in clock ticks. This 
includes guest time, cguest_time (time spent running a 
virtual CPU, see below). Cu_time value from /proc/[pid]/stat 

CST /proc/[pid]/stat Amount of time that this process's waited-for children have 
been scheduled in kernel mode, measured in clock ticks.  
Cs_time value from /proc/[pid]/stat 

GT /proc/[pid]/stat Time spent running a virtual CPU for a guest operating 
system, measured in clock ticks.  Guest_time value from 
/proc/[pid]/stat 

CGT /proc/[pid]/stat Guest time (GT) of the process's children, measured in clock 
ticks. Cguest_time  value from /proc/[pid]/stat 

DLY /proc/[pid]/schedstat Obtained from /proc/pid/schedstat, indicates the time spent 
waiting on a  kernel run queue but not executing.   

RCK /proc/[pid]/io The number of bytes which this task has caused to be read 
from storage. This is simply the sum of bytes which this 
process passed to read() and pread(). It includes things like 
tty IO and it is unaffected by whether actual physical disk 
IO was required (the read might have been satisfied from 
page cache) 

WCK /proc/[pid]/io The number of bytes which this task has caused, or shall 
cause to be written to disk. Similar caveats apply here as 
with RCK. 

RBK /proc/[pid]/io Attempt to count the number of bytes which this process did 
cause to be fetched from the storage layer. Done at the 
submit_bio() level, so it is accurate for block-backed 
filesystems. 

WBK /proc/[pid]/io Attempt to count the number of bytes which this process 
caused to be sent to the storage layer. This is done at page-
dirtying time. 

RXB libvirt Received bytes from libvirt virDomainInterfaceStats 
structure.  

RXP libvirt Received packets from libvirt virDomainInterfaceStats 
structure 

RXE libvirt Receiver side errors from libvirt virDomainInterfaceStats 
structure 

RXD libvirt Receiver side dropped packets from libvirt 
virDomainInterfaceStats structure 

TXB libvirt Transmitted bytes from libvirt virDomainInterfaceStats 
structure 

TXP libvirt Transmitted packets from libvirt virDomainInterfaceStats 
structure 

TXE libvirt Transmission side errors from libvirt 
virDomainInterfaceStats structure 

TXD libvirt Transmission side dropped packets from libvirt 
virDomainInterfaceStats structure 

PF1 /proc/[pid]/stat The number of minor faults the process has made which 
have not required loading a memory page from disk.  Minflt 
value from /proc/[pid]/stat 

PF2 /proc/[pid]/stat The number of minor faults that the process's waited-for 
children have made. Cminflt value from /proc/[pid]/stat 

PF3 /proc/[pid]/stat The number of major faults the process has made which 
have required loading a memory page from disk.  Majflt 
value from /proc/[pid]/stat 

PF4 /proc/[pid]/stat The number of minor faults that the process's waited-for 
children have made. Cmajflt value from /proc/[pid]/stat 

BIO /proc/[pid]/stat Aggregated block I/O delays, measured in clock ticks, 
expressed as a rate per time. Delayacct_blkio_ticks value 
from /proc/[pid]/stat 



 A time series plot of all non-zero time-series for one 
experiment are shown in Figure 1. Series not shown, were static 
(zero) observations, and were thus not applicable in our 
experimental configuration. 

II. Experimental Results 
This section provides an analysis of our experimental results. 
First, we present an overview of the multivariate data we 
collected across workloads and our analysis approach. Second, 
this section describes the features that were found to initially 
have predictive power from our set of reasonable guess features 
listed in Table X. Following that, an investigation into the effect 
of feature observation variance on learned rules is presented 
before moving on to quantify rule set accuracy and a brief 
analysis of surprises encountered during experimentation 
(related to assumptions about workload-specific predictive 
features). This section concludes with an analysis of the effects 
of observation sampling frequency on variation and the 
portability of learned rule sets. 
 

A. Multivariate Analysis Plots 
 

For each workload run, feature-specific data was analyzed using 
a series of automated plots and analysis using scalable vector 
graphics (SVG) for manual inspection. This analysis included 
time series plots of each feature to observe general trends in the 
series as well as ensuring each observation was recorded 
correctly (as evident in Figure 1).  Box and whisker plots were 
created for each feature to characterize the variance of feature 
observations. Histograms of observed features were created as 
well as a scatterplot of each feature against the determined 
classification. The histogram plots of observed values were 
performed to determine what, if any, type of distribution the 
feature corresponds to. Many machine learning models assume 
a Gaussian distribution, and surprisingly none of our 
observations correspond to a Gaussian distribution. In the 
scatterplot analysis of each observation, the corresponding 
determined classification was encoded as a 1 or 0, with 1 
meaning over-constrained or under-performing the experimental 
threshold for successful virtual machine operation response, and 
0 meaning nominal or well-performing virtual machine 
response.  

Moving beyond univariate analysis of features, an 
examination of the multivariate data set (across all features) 
from each experiment was performed.  A representative example 
Andrews plot for the HTTP workload is shown in Figure 2. A 
type of signal, shown in teal (darker) distinguishes over-
constrained data values against background field of gold 
(lighter) nominal values.  This signal is what our machine 
learning approach attempts to differentiate from the feature 
vector observations. Since some signal seems apparent in the 
plot, we next sought to answer if any individual variable had 
overwhelming predictive power, or if features showed high 
predictive correlation obviating the need for machine learning 
on unnecessary features, or even at all.  

 

 

 
 
Figure 2: Representative HTTP workload Andrews Plot. Given the high 
dimensionality of this data, simpler approaches like 2D scatter plots, 
histograms, and boxplots, are lacking. Teal (dark) lines represent over-
constraint, while gold (light) lines represents nominal VM performance. 
Each attribute of an observational data set row is represented by a point on 
the line, like a line chart, but the way data is translated into a plot is 
substantially different. Each column from the data set is normalized 
independently and smoothed. Andrews Plots are a rolled-down, non-
integer version of the Kent-Kiviat radar chart, or a smoothened version of 
a parallel coordinate plot. 

 

 
Figure 1: HTTP Experiment Select Time Series. The abscissa shows time in 
seconds since the beginning of the experiment covering approximately 10 
minutes in elapsed time for this experiment. Each vertically stacked subplot 
shows the time series of observations from a single feature.  Only those features 
with nonzero series are shown. Surprisingly, several seemingly relevant 
selections for features produced no signal in our measurement framework. Upon 
investigation, many parameters are not relevant to KVM virtual machines 
(though would likely be relevant in other hypervisors). Several time series 
represented in the scale above show high correlation but are in fact distinct time 
series when viewed at high resolution.  The left most 1/6th of the chart 
corresponds roughly to the boot-up process. All time series values sampled at 
1Hz. Series labels correspond to the entries in Table 1. 



The correlation matrix plots across all feature time series 
highlight positive and negative correlations in the observations. 
By focusing on intra-feature correlation, efficiency can be 
increased by sampling only one element from a highly-
correlated feature set at runtime. Example correlation plots are 

shown in Figure 3, 4, and 5. Since some data are related 
(received bytes and received packets for instance) some degree 
of correlation is expected. Our intuition was that an element 
from a highly-correlated pair would not simultaneously occur in 
machine learned rulesets. In other words, the machine learning 
would focus on a single predictive feature from a set of highly 
correlated features. Also by including the classification in the 
correlation matrix we could determine if any individual feature 
was overwhelmingly predictive, implying a simpler univariate 
approach to over-constraint detection would be sufficient. As 
shown, no individual feature was highly correlated to the 
resulting learned binary classification making this problem 
multivariate, nonlinear, and complex, thus suitable for a 
supervised machine learning approach. 
 

B. Initial Features Found to Have Predictive Power 
 

Table 2 summarizes the predictive features from our initial 
experimentation using 1Hz sampling across workloads.  

Table 2: Features used in final decision tree classifier rules, separated by 
workload.  Marked values show predictive power in our experimental 
configuration. 

 

Kernel Feature HTTP/PHP 
Web Server 

SQL 
Database Video Server (I/O) 

CPU X  X 

UT    

ST    

CUT    

CST    

GT    

CGT    

DLY X   

RCK X X  

WCK X X X 

RBK   X 

WBK X   

RXB    

RXP    

RXE    

RXD    

TXB    

TXP    

TXE    

TXD    

PF1    

PF2    

PF3   X 

PF4   X 

BIO X X X 

 
Figure 3: Feature Correlation Matrix HTTP Workload 

 
 
Figure 5: Feature Correlation Matrix Video Workload 

 
Figure 4: Feature Correlation Matrix SQL Workload 



Listing 1, Listing 2, and Listing 3 show resultant rule sets from 
the initial experimentation. Each enumerated rule within the 
rules-sets shown is composed of attribute-value arithmetic 
expressions and the associated classification when the arithmetic 
expression is true. Each rule expression is followed by a 
percentage value indicating rule accuracy. Note, that the final 
rule labels (numbers) are arbitrary and no rules were withheld. 

 For example, in the rules shown in Listing 1, we can begin 
to read the rules as follows: Rule 13: if "WCK > 5124.52" and 
“WBK <= 29.33" then "Over-Constrained”. According to the 
generated C4.5rules, this rule is accurate 92.6% of the time, or 

in other words, has a 7.4% margin of error. In all experiments, 
classification 1 indicates over-constraint, and classification 0 
indicates nominal performance. Note that for all rule sets shown, 
if no individual learned rule was applicable, the default 
classification assumes nominal or well-behaved VM 
performance. As shown in Subsection D: Observation Sampling 
Frequency, the default classification is relevant, as situations 
with insufficient training data yield default classifications.  With 
trained rule sets, one can invoke the bundled consultr rule 
interpreter application from the C4.5 runtime, or take the 
approach outlined in [TBDT] to compile custom embodiments 
of these rules into embeddable, pre-compiled shared objects for 
use at runtime on a per-VM basis as specified in a virtual 
machine contract [CONTRACTS].  

 The remainder of this section attempts to provide the authors 
intuition on what was expected from the learned rule sets, and 
what was empirically observed. While not attempting to provide 
an exhaustive post-hoc analysis of each rule, we do want to 
convey some surprises we encountered while explaining our 
intuition. Our intuition is provided to contrast to the reader’s and 
emphasize the difficulty in forecasting workload performance 
based on the nuanced interplay of available resources.  We will 
return to major unexpected results from these rules and Table 2 
in Section E: Experimental Surprises.  

 Our intuition of the HTTP workload was that some 
combination of delay and networking characteristics would 
dominate the rule set. The results were more nuanced than we 
had expected. Listing 1 has rules comprised of CPU 
consumption (CPU), blocked I/O (BIO) and memory writes (in 
character and bytes as WCK, WBK respectively). Rule 2, the 
lengthiest rule indicates over-constraint in a narrow range of 
CPU consumption, when blocked I/O is high, and CPU 
scheduler delay is high.  Simpler rules like Rule 1 and 2 indicate 
that blocked I/O and memory pressure below a certain threshold 
indicated an HTTP VM is not likely to be nominal. Similarly, 
Rule 6 indicates low scheduling delays on the processor with 
little memory writes are also indicators of nominal behavior.  

 Our intuition for the SQL workload was that the rules would 
be generally governed by blocked I/O (BIO) and CPU 
properties. As shown in Listing 2, our intuition did not entirely 
match reality. As rules were indeed governed by blocked I/O, 
but memory characteristics made the remainder of the features 
of interest. From examination of Rule 2 and 3 we can see a 
machine learned tipping point for this workload in the WCK 
property, when in conjunction with high blocked I/O, causes a 
classification to transition from nominal (Rule 2) to over-
constrained (Rule 3). 

 Having little practical experience with the file streaming 
workload prior to this research endeavor we had no firm 
intuition on what to expect. Interestingly the output Rules in 
Listing 3 indicate that combinations of CPU consumption 
(CPU), a page fault type (PF3) and blocked I/O (BIO) make up 
most the rules. Upon reflection, these rules make some intuitive 
sense since page faults may be related to requesting un-cached 
content on disk, or requesting content which has aged out.  
Similarly, processes blocked on I/O seem a relevant indictor of 
over-constraint for a workload whose sole purpose is to stream 
I/O content.  

Rule 13:  
    WCK > 5124.52  
    WBK <= 29.33 
    -> class 1 [92.6%]  
 
Rule 10:  
     CPU > 0.6667  
     CPU <= 1.3333  
     DLY > 16.59  
     WCK > 3103.53  
     BIO > 98.33  
     -> class 1 [91.2%]  
 
Rule 3:  
     WCK > 3103.53 
     WCK <= 4104.06 
     BIO > 98.33  
     -> class 1 [89.1%]  
 
Rule 1: 
      WCK <= 3103.53 
       -> class 0 [99.6%] 
 
Rule 16: 
      RCK > 0.13  
      WBK > 29.33  
      -> class 0 [99.1%]  
 
Rule 2:  
     BIO <= 98.33  
     -> class 0 [98.4%]  
 
Rule 6:  
     DLY <= 16.59  
     WCK <= 5124.52  
     -> class 0 [97.8%] 

Listing 1: HTTP Workload Decision Tree Rule Set  

Rule 5:  
    RCK > 50.77  
    WCK > 1.39 
    -> class 0 [99.2%]  
 
Rule 1:  
     BIO <= 99.67  
     -> class 0 [98.8%]  
 
Rule 2:  
     RCK <= 50.77 
     WCK <= 1.73 
     -> class 0 [95.8%]  
 
Rule 3: 
      RCK <= 50.77  
      WCK > 1.73  
      BIO > 99.67 
      -> class 1 [88.2%]  
 
Rule 2:  
     BIO <= 98.33  
     -> class 0 [98.4%]  
 
Rule 4:  
     WCK <= 1.39  
     BIO > 99.67  
     -> class 1 [31.4%] 
 

 Listing 2: SQL Workload Decision Tree Rule Set  



 

C. Effect of Observation Variance on Learned Rules 
  

 Since the data sets collected are inherently multivariate, and 
many of the features sampled are far more variable than others, 
experimentation was necessary to explore the relationship 
between feature variability and machine learned decision tree 
rules. One method for understanding these workload traces is to 
visualize the features sampled as a set of coordinates in a high-
dimensional data space using 1 axis per variable. This technique 
is known as Principal Component Analysis (PCA) [PCA]3. 
Using this approach, a PCA plot constructs a lower-dimensional 
projection of the data when viewed from a particularly 
advantageous viewpoint highlighting variance. In keeping with 
convention, each workload trace feature was mapped into the 
range [-1, 1] before plotting the PCA (lowest mode) to determine 
the features with the largest variance.  

In the HTTP experiments PCA results indicate a top tier 
cluster of influence from TXB, TXP, RXB, RXP, and PF3 
features which dwarfed the variance of the remaining features. 
The conclusion is that our choice of PHP workload variance was 
highly dynamic with respect to network features and page fault 
fluctuations.  Since the workload was constructed to drive web 

                                                
3 PCA is also known by other names depending on the field of application including but not limited to: the discrete 
Kosambi-Karhunen–Loève transform in signal processing, the Hotelling transform in multivariate quality control, proper 
orthogonal decomposition in mechanical engineering, and eigenvalue decomposition in linear algebra. 

traffic over intervals with rapidly increasing numbers of clients 
over TCP/IP connections this makes intuitive sense.  

In contrast, SQL experimentation showed the large variance 
in the PF3, and BIO features. Workload variance was further 
impacted in a second tier grouping by network performance of 
both transmission and receipt features, ahead only slightly to a 
third tier grouping of memory-related features. This makes some 
intuitive sense as the workload is I/O bound in nature and both 
page faults and blocked I/O counts can reasonably be expected 
to rise as the number of clients were increased making SQL 
requests for dynamic table data until over-constraint conditions 
were observed in the workload. 

The PCA for the file streaming workload demonstrated a 
cluster of large magnitude vectors forming a top tier with RXP, 
TXP, TXB, RXB in descending order. These were followed by 
a second tier with UT, and DLY. A much smaller magnitude was 
shown for BIO, PF3 followed up with the smallest magnitude 
vectors for WBK, RBK, PF4, RCK.  

In all three of our workload test cases, comparing the PCA 
feature magnitude and the learned rules in Listing 1, 2 and 3, 
indicates that feature salience is therefore unrelated to variance 
for this dataset and problem domain, implying other features of 
interest might be incorporated into the feature vector of 
observations with little concern for the variability of the feature 
impacting the resultant classifier. 

 

D. Rule Set Accuracy 
 

In addition to generating rulesets, the C4.5 runtime also provides 
measures of rule accuracy against training data reserved for 
testing at rule generation time. Table 3 provides an analysis of 
the rule set error and information about the observations used to 
generate the rule sets. The column labeled “Tested” indicates the 
number of data rows, or time steps, used in training the classifier 
with nominal and over constrained data sets.   

 
Workload Tested Errors Error 

Percentage 
False 

Positive 
Count 

False 
Negative 

Count 

HTTP 547 6 1.1% 1 5 

SQL 260 2 0.8% 1 1 

VIDEO 1009 24 2.4% 0 24 

Table 3: Decision Tree Accuracy Against Training Data. All values are 
for a 1Hz sampling regime. 

                                                          

Rule 9: 
     RBK > 52 PF3 > 341.33  
     BIO <= 31.67  
     -> class 1 [87.1%]  

Rule 11:  
     PF3 > 368.33  
     BIO > 56.33  
     BIO <= 78.67  
     -> class 1 [79.4%]  

Rule 5: 
     CPU > 1  
     PF3 <= 341.33  
     BIO > 56.33  
     -> class 1 [50.0%]  

Rule 1:  
     RBK <= 12  
     -> class 0 [99.8%]  
 
Rule 3: PF3 > 320.67  
     PF3 <= 341.33  
     BIO <= 56.33  
     -> class 0 [99.7%]  

Rule 6:  
     CPU > 16.3333  
     PF3 <= 341.33  
     -> class 0 [99.6%]  

Rule 7:  
     WCK > 0 
     -> class 0 [99.4%]  
 
Rule 8:  
     RBK <= 52  
     BIO <= 31.67  
     -> class 0 [98.8%]  

Rule 10:  
     PF3 > 341.33  
     PF3 <= 368.33  
     BIO > 31.67  
     -> class 0 [96.1%] 

 

Listing 3: Video Streaming Workload Decision Tree Rule Set 



 
                Table 4: External Vs. Internal Networking Experiment 

 
Elaborating further on Table 3, the HTTP workload consisted of 
547 complete sets of feature observations, each comprising a 
single row in the VM log. Thus, the experiment took 547 
seconds to complete given the 1Hz sampling regime used for 
these experiments. The “Error” column indicates the sum of 
false positives and false negatives encountered during rule 
testing performed by the c4.5 runtime at rule generation time. 
These values are further broken out into the “False Positive 
Count” and “False Negative Count” columns, respectively. The 
“Error Percentage” column indicates the percentage of 
classifications that would be in error if the rule set was adopted. 
As reported in Table 3, in general low error percentages are 
observed while there is a distinct trend in errors toward false 
negatives.  

E. Experimental Surprises 
 
Referring once more to Table 2, the authors encountered a few 
surprises with the analysis as shown, having expected to see 
many more of the features outlined in Table 1 to have some 
predictive value (as evident by writing the data collection 
routines for what seemed a relevant set of parameters for 
determining VM health) unencumbered by previous experience 
with this approach as well as no practical experience working 
with observations of most of the features sampled. Perhaps 
most surprisingly was the total lack of network related features 
that we had expected to see in at least the HTTP workload. To 
determine the effect of rule set determination on internal vs. 
externally driven workloads we performed the HTTP workload 
as driven by an external client using a different bridge network 
exposing the VM to the outside network, effectively making the 
guest, the VM under study, and an external workload generation 
machine act as peers on a flat network. The data collection 
scheme remained unchanged, save for the experimental 
networking setup. The results of this analysis are shown in 
Table 4. As can be seen this change yielded predictive power in 
a network receipt feature (RXB) as well as a network 
transmission feature (TXP).  The results in Table 4, combined 
with other time series plots not shown here further prove the 
correctness of our data collection routines for these features, but 
demonstrate that it is not obvious which features will show 
predictive power in learned rulesets. Interestingly, note the 
indication of PF3 as predictive for this variant while it was not 
selected in the intra-hypervisor experimental HTTP rule set. 
While we would intuitively expect some level of transmission 
and receipt features to be relevant in all HTTP workload 
variants, the sensitivity of features to hardware platform for the 
HTTP test was a surprising result. Error rates were small in both 
the internal and external networking experiments and generally 
consistent across HTTP variations with slightly more 
intuitively expected features present in the off-platform client 
scenario (External Networking). In retrospect, using a decision 
tree classifier has proven useful to ourselves since a SVM based 
classifier would work as a black box with no intuition or 
surprises to guide further investigation.  
 
F. Effects of Observation Sampling Frequency Variation 
 

To determine the effects of feature observation sampling 
frequency on learned decision tree rules, initial sampling for all 
VM features exposed to the hypervisor through the proc and 
libvirt interfaces occurred at 1Hz. Intuitively this seemed a 
reasonably high sampling frequency and was selected, in part, to 
determine the computational overhead of “high-frequency” 
sampling. Classifiers were trained as outlined previously, while 
data sets were post processed (subsampled) by windowing the 
data into 3, 5, 10, and 60 second data sets to understand the effect 
of decreased temporal resolution in feature sampling regimes. 
No averaging was done over the interval of discarded samples 
to replicate a lower sampling frequency over the same 
experimental duration. The results of this experimentation are 

HTTP 
Feature 

1HZ HTTP INTERNAL 
NETWORKING 

1HZ HTTP EXTERNAL 
NETWORKING 

CPU X X 

UT  X 

ST   

CUT   

CST   

GT   

CGT   

DLY X X 

RCK X X 

WCK X X 

RBK   

WBK X X 

RXB  X 

RXP   

RXE   

RXD   

TXB   

TXP  X 

TXE   

TXD   

PF1   

PF2   

PF3  X 

PF4   

BIO X X 

ERROR % 1.1% 
(6/547) 

1.4% 
(4/287) 



shown in Table 5. There is no simple summary to be provided 
for the nuanced interplay of sampling regime and predictive 
features shown in Table 5. However, it is evident that varying 
the observation sampling frequencies yields a direct and 
measurable impact on decision tree rules, including accuracy 
against training tests as well as which features show predictive 
power. The most commonly predictive feature was found to be 
blocked IO. Since each of our workloads had an I/O component 
this is perhaps not entirely surprising. The analysis of rulesets 
and relating them to intuition and sampling frequency, while 
interesting, is an aside to the core focus of this work, which was 
providing reproducible VM over-constraint detection in IaaS 
VMs so we have intentionally limited discussion here to obvious 
trends. 

 In Table 5, sampling was also performed at 1/60 Hz but in 
all cases, the classifier failed to learn any pattern in over-
constraint, and assumed a nominal classification by default. 
There are two reasonable explanations for this. The first is to 
assume that the data was simply too sparse, and through 
sufficient replication of the same experiments, one could build a 
classifier at the expense of experimental data collection and 
curation time. A second possible explanation is that the 
fundamental patterns in the operating system data are on a time 
scale that is so much faster than once per minute, that transient 
events indicative of failure/over constraint situations get lost or 
missed entirely.  Another observation is that by decreasing the 
sampling rate, our machine learning implementation learned a 
rule set comprising fewer features. 

 

G. Rule Set Portability  
 
To test the portability learned classifiers, a series of 

portability experiments were performed in which training and 
classifier learning occurred on a small laptop configuration (4 
cores, i5 processor, 2.67 GHz, 3GB RAM). The learned 
classifier and associated VM were then transferred to a larger 
server (24 cores, Xeon ES02540 @ 2.5GHz, 94GB RAM) and 
underwent the VM workload once more (HTTP, SQL, Video 
Serving). However, in this experiment the log records from the 
VM under test were used as input to the previously trained 
classifier rules that were generated on the small host 
configuration using the same 1Hz sampling interval. In these 
experiments, the moved classifiers were shown to be portable 
across hosts.  

This is in part due to the design of the input data, that the 
classifiers are trained on. These training data, or feature values, 
are not expressed as absolute values or counters as exposed 
natively in /proc or libvirt but instead converted to rates per 
elapsed wall clock time of the nominal sampling frequency. 
Many of the features sampled are constantly increasing values 
as they are simply a type of counter (e.g., page fault counters). 
Using raw counter values would not work in a VM setting 
because as the VM ages, the counters indefinitely increase. 
Rules generated from this data would improperly focus on to the 
absolute value of the counter type features and are therefore not 
be applicable to an older VM instance whose counters were 
necessarily higher in magnitude (assuming the same average rate 
of change in the features over time throughout the VM lifecycle. 

To make these ever increasing counter relatable across systems 
is to convert them to the increase per unit time. Similarly, other 
features that could be expressed as a percentage of absolute 
physical capacity (CPU related features) were converted into 
percentages making relation across hosts possible. By using 
percentages of physical limitation where possible, and rates per 
unit time everywhere else, we collect data which is abstracted 
from the physical host and from the age of the VM, and thus 
rules generated are applicable early in the VMs lifecycle, as well 
as for long lived VMs with uptimes of months or years). 

The results of this experimentation imply classifiers trained 
on rates which are comparable across host platforms should be 
host-agnostic within the same general class of host. While we 
did not have access to exotic hardware, we assume there are 
limits to this host-agnosticism when drastically different 
hardware platforms are used (for instance switching to solid state 
hard drives when training on a host with traditional rotating 
media). Other hardware platform changes likely to cause 
impacts to ruleset host-agnosticism include VMs which access 
file systems over SAN storage vs local media etc. More 
experimentation across a broad variety of hardware 
configurations would be required to definitively explore the full 
nature of classifier portability. Based on the authors’ 
observations of commercial data centers, IaaS host servers are 
often relatively homogeneous hardware. It has been observed 
that many hosting data centers purchases full racks of identical 
servers. It is therefore reasonable to suggest confining VMs and 
learned classifiers to a cage, rack, or cluster of generally 
comparable hardware such that sufficiently host-agnostic 
classifiers could be viable in practice.  



III. Conclusions and Future Work 
The work presented here sought to answer several fundamental 
questions. The analysis presented indicates low error rates can 
be achieved in automated detection of over-constrained VM’s 
using binary decision tree classifiers trained on a set of 
seemingly relevant features exposed to the hypervisor. This 
technique enables black box (out-of-band, or agentless) 
classification of VM over-constraint at runtime as a trigger for 
remediation. Further, this work conclusively demonstrated that 
the training sampling regime has a large impact on classifier rule 
generation. Specifically, it was demonstrated that 1Hz sampling 

was sufficient while 1/60 Hz sampling was insufficient in all 
cases. Furthermore, the evaluation overhead at 1Hz was 
negligible using the lightweight proc and libvirt based 
instrumentation that should easily scale to hundreds of VMs 
without perceptible hypervisor performance impact. This work 
also demonstrates that when training classifiers in this fashion, 
it is important to construct a realistic training workload that will 
behave in the same way as production workloads with respect to 
network access from outside the hypervisor or within a 
hypervisor since those training decisions make a marked impact 
in ruleset determination of predictive features by the classifier 

Table 5: By varying the feature collection frequency a marked change in the learned rules of the c4.5 classifier is evident. Note that no classifier generated a 
viable rule set at the 1 Minute sampling interval, and in the case of the SQL workload 1/10 Hz sampling also failed to generate a viable rule set.  

VM 
Feature HTTP Workload  SQL Workload  Video Server Workload 

 
Sampling 
Interval 

1 
sec 

3 
sec 

5 
sec 

10 
sec 

 

1 
sec 

3 
sec 

5 
sec 

10 
sec 

 

1 
sec 

3 
sec 

5 
sec 

10 
sec 

CPU X        X  X  

UT             

ST             

CUT             

CST             

GT             

CGT             

DLY X            

RCK X    X X X      

WCK X X X X X    X    

RBK    X     X X   

WBK X X X          

RXB          X   

RXP      X     X  

RXE             

RXD             

TXB             

TXP   X         X 

TXE             

TXD             

PF1             

PF2             

PF3   X      X    

PF4         X    

BIO X    X X X  X X X X 

ERROR 
% 

1.1% 
6/547 

6% 
11/183 

1.8% 
1/55 

1.8% 
2/110 

0.8% 
2/260 

0% 
0/87 

1.9% 
1/53 

3.7%* 
1/27 

2.41% 
24/1009 

3.3% 
11/337 

2.0% 
4/292 

2.0% 
2/101 

 



runtime. The authors would also like to probe the limits of 
hardware applicability of generated rule sets, for instance 
switching a generated rule set to a host with solid state hard 
drives from a host with traditional rotating media.  

 Through analysis of feature correlation matrices and 
corresponding generated rule sets it was demonstrated that 
features selected within rule sets tend to show low cross 
correlation (below 0.4) while no individual observed value 
showed high direct correlation with classification. One possible 
interpretation is that while there was no “magic bullet” feature 
that can be used more simply to infer VM health from the 
hypervisor context, a focused selection on just the right features, 
surprising as they might be, can be very predictive. Furthermore, 
these predictive models were successfully trained on a small 
capacity system and the results moved to a larger capacity 
production server, and remained functional.  

 The authors note that the classifier chosen determined 
predictive feature sets that were relatively small in comparison 
to the total number of sampled features that were hypothesized 
to be relevant for this classification effort. Furthermore, 
generated rule sets were generally short, comprised of between 
6 and 9 rules, with each individual rule consisting of at most 5 
arithmetic expressions. The authors posit that readability of rules 
from a binary decision tree classifier would generally be 
desirable in comparison to a SVM-like classification scheme 
wherein the resulting learned rule set cannot be crisply 
articulated to system administrators who, when informally 
surveyed about the desirability of such an assistive framework 
(with remedial VM action trigger automatically) generally 
expressed derision at autonomous system management, however 
effective, whose policy cannot be explained simply.  

      Further, our work has demonstrated that VM creators need 
not ship the workload used to create the classifier with the VM 
due to abstraction of the learned rule set that operates on black-
box VM data without requiring VM instrumentation at 
deployment time. However, exploring shippable training 
workloads that could be bundled with a VM for re-training on 
new classes of hardware may be of interest as new hardware 
platforms are developed. With the system design used here, the 
option remains open, but not strictly necessary.  

       This work is an ongoing investigation into VM 
management, with the intended application toward triggering 
agentless, automatic VM rebalancing within an IaaS data center 
via live-guest migration. However, the approach taken herein is 
not entirely specific to VMs given that many of the values we 
use for training and runtime evaluation are simply /proc entries, 
and those values which were of libvirt origin may likely have 
suitable alternative API for general purpose per-process network 
accounting. If so, the approach demonstrated might apply to 
non-VM generic workloads encapsulated as individual 
processes on a host. Thus, extensions to this work may be related 
in spirit to that of [KUNDU] although that line of inquiry 
remains beyond the focus of our present research agenda into 
IaaS cloud management. 
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