
A Host-Agnostic, Supervised Machine Learning Approach to

Automated Overload Detection in Virtual Machine Workloads

Eli M. Dow
IBM Research

Yorktown, New York, USA
emdow@us.ibm.com

Jeanna N. Matthews
Clarkson University

Potsdam, New York, USA
jnm@clarkson.edu

Abstract—This paper evaluates a mechanism for applying
machine learning to identify over-constrained IaaS virtual
machines (VMs) in preparation for load balancing or VM
migration. Herein, over-constrained VMs are defined as those who
are not given sufficient system resources to meet their workload
specific objective functions. To validate our approach, a variety of
workload-specific benchmarks inspired by the most common
Infrastructure-as-a-Service (IaaS) cloud workloads were
implemented. These workloads were run while regularly sampling
VM resource consumption features exposed by the hypervisor.
Datasets were curated into nominal or over-constrained according
to per-workload objective functions. These per-VM datasets are
used to train machine learning classifiers to determine virtual
machine over-constraint rules based on workload one-time log
analysis. These rules which are learned when the VM is run in one
environment are then transferred with the VM to other
environments to determine if they are effective for identifying
over-constraint in the new environments as well. Our approach is
advantageous because VM creators or software distributors may
train a runtime over-constraint classifier that can be applied by
future users of the VM image. The VM creators often have unique
knowledge of expected VM performance and experience in
performance tuning that users of the VM lack. Key contributions
of this work include: demonstrating which VM resource
consumption metrics (features in machine learning) prove most
relevant to learned decision trees, and a discussion of the
techniques required to generalize this approach across hosts while
limiting required up front training expenditure to a single VM and
host. Other contributions include a rigorous explanation of the
differences in learned rulesets as a function of feature sampling
rates, and an analysis of the differences in learned rulesets as a
function of VM workload variation. We demonstrate that 1Hz
sampling was sufficient while 1/60 Hz sampling was insufficient in
all cases. An analysis of feature correlation matrices and
corresponding generated rule sets is provided that demonstrates
that individual features comprising rule sets tend to show low
cross-correlation (below 0.4) while no individual feature shows
high direct correlation with classification. We demonstrate
workload-specific error percentages below 2.4% with a mean
error across workloads of 1.43% (and strong false negative bias)
for a variety of representative cloud workloads tested and ruleset
portability across hosts.

Keywords—virtual machines; cloud-computing; IaaS
management; decision trees; support vector machines; binary
classification; cloud provisioning; resource allocation.

I. Introduction
There are numerous challenges to solve when implementing

highly elastic VM resource allocation schemes. Methods for

inferring data about a VM under observation can be divided into
in-band and out-of-band approaches. In-band approaches
require installing one or more agents that monitor and, when
necessary, react to the changing parameters of the system under
study. Generally, existing systems require the VM operator to
install a software agent in the VM, that can be used to gather
information and drive a monitor-analyze-remediate
management loop capable of making resource allocation
decisions. Out of band monitoring, or agentless monitoring, is
simpler to install and administer (centralized on the hypervisor
not the VMs) and does not restrict the VM owner by imposing
an agent or any other requirements into their VM. The lack of
interference or imposed requirements on IaaS cloud VMs cannot
be understated, as this cloud type caters to arbitrary OS images.

A. In-Band Monitoring and Agents

An in-band approach works best for the type of cloud
computing known as Application-as-a-Service (AaaS), in which
a single application is developed, tuned, and sold repeatedly to
customers who remotely access the VM application. In this
model, installing agents to monitor resource availability and VM
system performance is an attractive solution since the provider
of the service has full access to the virtual machine. In addition,
the VM creator has the requisite domain specific knowledge
about the application to effectively instrument systems to detect
resource over-constraint. Since a single application is tuned and
resold as a service, the cost of developing custom agents on a
per-application basis is amortized across all instances sold,
making it cost effective and practical due to economies of scale
at high volume. AaaS cloud computing environments use agent
derived metrics to ensure that some service level agreement
(SLA) has been met, and if not, consider the machine to be
lacking in resources.

However, monitoring VMs for the purposes of performance
management or SLA compliance is a nontrivial task. The clear
majority of application performance indicators require
application-level knowledge. A common solution for
performance instrumentation is a framework that application
authors can extend if, and only if, they have access to the source
code of the software to be monitored. An example of this type
of architecture is the Application Response Measurement
(ARM) standard [ARM].

In-band monitoring systems are not always possible, as they
often require intrusive instrumentation, ongoing computational
burden in the VM (especially with heavy weight agents), and
substantial development time. In general, agent-based solutions

present a problem in the context of Infrastructure-as-a-Service
(IaaS) compute clouds. Also, most agent-based solutions are
specific to a given operating system and/or specific user space
application. This makes them of limited utility, since they are
tightly coupled to the workload they monitor. Consider that an
operating system under heavy load could potentially cause an
agent running within it to starve for resources. This derivative
effect of overloading the system which you are measuring
reduces the effectiveness of this type of agent.

In-band agents also suffer from several other drawbacks.
They need to be written or customized for every workload
(operating system and possibly also application). They increase
potential security liabilities and are susceptible to attacks from
within the monitored object. This model does not fit with the
Infrastructure-as-a-Service model where a laissez-fare approach
is generally required for the provisioned guest as per typical user
agreement.

B. Out-of-Band, Agent-less Monitoring

Virtualization technology makes it possible to encapsulate
an entire operating system or application instance within a
virtual object that can then easily be monitored and manipulated
without any knowledge of the contents or behavior of that object.
This can be done out-of-band, using general-purpose
hypervisor-based agents that are not affected by the behavior of
the VM. Out-of-band agents suffer from reduced visibility into
the behavior of the system being monitored and more limited
response abilities because they can only treat the monitored
machine as a black box. Out-of-band agent techniques would be
considered prohibitively expensive in many previous dynamic
workload balancing algorithms that deal strictly with short-lived
processes (on the order of seconds to complete, such as MPI
threads of execution) since management overhead is amortized
over the length of the compute job. Relatively fast running
compute jobs provide little time to amortize management
overhead. However, the long running (indefinite execution)
nature of VM processes indicate that the overhead associated
with the measurement and detection needed for load balancing
may be well worth the cost. In addition, for VM processes in
enterprise computing environments, the potential consequences
of a bad migration decision may justify using higher-overhead
machine learning techniques if they ultimately yield better
migration decisions.

C. A Vigilant Approach

Our work is inspired by Vigilant, a system based on out-of-
band monitoring in which researchers could determine the health
and status of a virtual machine based solely on data observations
that were external to the VM yet accessible by the hypervisor
context [VIGILANT]. The experimental results from Vigilant
show that certain types of problem conditions in VMs could be
detected out-of-band with high accuracy while avoiding the
pitfalls associated with in-band monitoring. Given that the set of
data that can be collected by a hypervisor is inherently limited,
it can be quite difficult to discriminate between ideal and non-
ideal behaving VMs. Vigilant was the first system to combine
the ease of out-of-band data collection with machine learning to
improve VM systems management, but while Vigilant focused
on detecting a limited set of faults (such as halted on error

conditions), our own work goes deeper and provides a
generalization of their approach in autonomously detecting VM
over-consolidation.

The remainder of this section will explain in more detail the
Vigilant approach as well as differentiate our own work from
theirs. The system used in Vigilant monitored the hypervisor
resource requests and VM utilization. A decision tree classifier
machine learning method was used to analyze the readings at run
time and detect problems in situ.

A key element of the Vigilant system was their choice of
decision tree classifier. They selected a decision tree for their
work principally because of the training simplicity while also
noting that the generated trees are easy to interpret by human
observers. Perhaps surprisingly they also found their trained tree
to be easy to implement with efficient runtime characteristics.
However, the Vigilant authors did note that decision trees may
not be ideal. They remark that in terms of classification power,
a decision tree is generally considered to be a crude precursor to
more modern tools such as support vector machines described in
the text “Pattern Classification” by Duda et al [PATCLASS].
They go on to specifically state, that based on their experience,
a decision tree is sufficiently powerful for analyzing VM
runtime metrics. For further information about decision trees
interested readers are referred to Mitchell’s “Machine Learning”
[MITCHELL].

Vigilant specifically targeted the detection of extremely high
CPU utilization in kernel space. In one early experiment, they
deployed several virtual Linux instances under the QEMU
emulator [QEMU] with each running a different type of
workload (web service, mail service, etc.) started at various
times (to vary the overall load on the host system). In these
experiments, the authors could classify, using a simple decision
tree, the case where the workloads from different machines
strain the host machine’s resources, as opposed to the case where
only one of the virtual machines was under load. Though they
omitted the details of that experiment, they indicated that their
approach was applicable in diverse settings. Since QEMU
underpins the operation of KVM virtual machines it makes sense
that their preliminary results from those investigations should
coincide with our own experimental data derived from KVM
VMs.
 Lastly, the authors of Vigilant warn that the application of
machine learning to VMs has been chronically hobbled by the
limited availability of labeled data that can be used to train the
classifier to detect normal and abnormal operation.

The work described herein varies from Vigilant in scope.
This work aims to solve a different, broader problem, wherein a
combination of multiple machine learning approaches is used to
determine if autonomous, out-of-band, general over-constraint
detection of VMs as a trigger for live-migration-based VM
redistribution actions is possible.

 D. Research Questions and Methodology

Motivated by interest into autonomous over-constraint detection
for VMs, this work seeks to answer the following open research
questions:

1. Which features or resource metrics are most useful in
automatically identifying over-constraint in IaaS cloud
computing environments?

2. How do the rule sets of learned classifiers vary across
common IaaS VM workload types?

3. How portable are the learned classifiers? Specifically, can
they be implemented such that an unmodified classifier can
travel with the virtual machine to other hosts while retaining
applicability?

4. What are the differences in learned classifiers as a function of
sampling frequency? Can one determine a lower bound on
practical sampling intervals?

The experimental methodology for determining VM over-
constraint by machine learning techniques was performed as
described in the remainder of this section. First, a test server was
configured with a KVM hypervisor. A virtual machine was then
created from scratch and configured with a variety of
middleware and workloads to be executed while under
observation from the custom black-box VM monitoring
software (running within the hypervisor context). Both the
hypervisor OS and VM were fully up to date with current
Ubuntu releases at the time of this experimentation. The
workloads installed on the VM are enumerated in section A:
Workload Overview while data collection methodology is
explained in section B: Experimental Data Recording. Each
workload was run, while data was collected from within the
workload itself on the VM, as well as externally visible data
collected at the hypervisor level. The combination of workload-
aware instrumentation, and black box data sets allow us to curate
data for supervised machine learning, specifically we use the
workload-aware instrumentation as the source for ground truth
of whether the VM is over-constrained or not and then we learn
to classify the VM as over-constrained using only the
hypervisor-level data.

A. Workload Overview
When trying to classify a set of benchmarks to use as

validation cases for our approach of machine learning over-
constraint in virtual machines, it is apparent that the breadth of
workloads that are run in public clouds cannot be totally
encompassed with a few, relatively specific, workload types. To
properly examine the results of machine learning of VM over-
constraint, a series of representative workloads were identified.
These workloads are surrogates for many of the common types
of workloads that are run as cloud instances. They span three
major categories: HTTP, SQL, and Video Stream Simulation
(File/IO dominated) workloads.

1) HTTP-PHP Workload
Workloads are executed against our HTTP and PHP

installation by using the apachebench benchmark utility1. The

1 To test our HTTP-based workload we performed a nominal installation of the Apache web server using the “apt-get install
apache2” command. Once a minor change was made to the default configuration of Apache to silence a configuration-file
related warning, we proceeded to install PHP to create more realistic web content to serve based on the observation that web
pages are not simply static HTML. Once installed and configured, a simple PHP page was created to exercises the PHP runtime.

individual apachebench runs were configured to consider
unconstrained VM situations when 90% of page responses were
received in less than 3 seconds. When more than 10 percent of
the page responses take more than 10 seconds, we consider the
HTTP VM server to be over-constrained. This threshold was
selected based on the observation that web pages that fail to
load almost instantly are considered too slow for production
use. Consumers invariably become frustrated with latencies and
go elsewhere, especially on mobile devices. Individual page
responses taking longer than 5 seconds to return are tallied as
errors. Using a wrapper script, the number of concurrent
apachebench requests is scaled iteratively with 10, 20, 30, 40,
50, 100, 150, 200, 250, 300, 350, 400, 500, up to 1000
concurrent requests. Each iteration is run for 60 second
durations before the next iteration proceeds to allow a slow
ramp up of workload over time. The workload script logs start
and end times of each iteration and aborts early, with a flag and
time stamp, when an over-constraint situation occurs.

2) Database Workload
To execute a workload against the database instance, we
installed the mysql-slapd utility was chosen to act as a workload
generator2. Overload was defined based on any individual slapd
invocation output file with an average query latency exceeding
5 seconds. As was done in the HTTP benchmark script, the
workload script logs start and end times of each iteration and
aborts early, with a flag and time stamp, when an over-
constraint situation occurs.

3) I/O Dominated Workloads (Simulated File Serving)
To simulate file I/O oriented workloads performed in the

cloud the filebench workload engine was selected and
configured to emulate the file access patterns of a streaming
video server. This configuration simulated new content creation
(uploads) and aging out of older content in such a way as to
simulate services like YouTube where videos are added,
accessed for some period of major activity eventually being
accessed infrequently as interest tapers off. The workload has 2
components, one which creates new content to be served and
one serving the content. The workload further distinguishes
between actively served videos and those which are no longer
active (aged content on disk and no longer in memory). The
video writing thread continuously produces new files
representing new user uploaded content. The number of threads
representing streaming users was selected as the independent
variable. The streaming thread count was manipulated over the
range of [40-60], incrementing by one additional thread per test
until the number of reported I/O operations per second fell
below a configured threshold (300) for any given test. Each test
ran with a given number of streaming threads for at least 60
seconds before moving on to the next test iteration with more

2 The freely available example database linked from the MySQL documentation page (dev.mysql.com/doc/index-other.html)
was installed to provide a reasonable test data set for the MySQL instance workload. The database is described as "employee
data (large dataset, includes data and test/verification suite).” After unzipping and importing the reference data set, it was
checked manually by listing the table records on the SQL console. Since one table had almost half a million rows of populated
data, the design criteria for a sufficiently large dataset was satisfied.

active file streaming threads. Each of the file serving treads
streams content from the active file set. The video replacement
rate was set to one video replacement every 10 seconds.

B. Experimental Data Recording
To record the purest data set possible, each VM was

exercised in isolation on an otherwise idle KVM host. First, our
black-box monitoring software was started to monitor for any
active KVM virtual machines without the VM running. We start
our out-of-band data collection routines early to capture the full
machine boot up process as well as a training workload interval
and some idle interval, because the patterns of resource
consumption at boot-up are often drastically different than when
running an operational workload. Our intuition was that this full
spectrum would lead to better trained classifiers with fewer false
positives triggered by VM restarts while under management that
would otherwise appear to demonstrate atypical workload
profiles to an out-of-band monitoring utility. To ensure that this
hypervisor-based monitoring component periodically scans a
host seeking all KVM process parameters. For each KVM
process detected on a given host, the logging component starts a
dedicated thread to monitor and collect KVM VM-specific
information. Each monitoring thread writes to its own distinct
log file that is specific to the VM under observation. Consistency
and continuity of log files is maintained by naming the files after
the UUID of the VM. This approach allows VMs to be stopped,
restarted, and moved to other hosts, while permitting merging of
VM specific log files to curate larger VM resource data sets.

After starting the hypervisor based monitoring software, the
VM under experimentation was started, thus enabling the
monitoring software to collect data throughout the VM boot up
process until a quiescent state of activity (a few minutes after
boot up completion). Next, an individual workload as described
previously (e.g., the HTTP workload or the SQL workload, etc.)
was started and run until an over-constraint condition was
triggered based on the VM workload performance. The
monitoring software continued to run until manually stopped,
allowing the capture of quiescent and incidental activity (such as
default background processed being triggered by the cron
daemon etc.), as a further set of data to be considered nominal.

After stopping the VM black-box monitoring software, a run
log file, named unambiguously with the UUID of the VM was
copied for archival and analysis. Values logged during black-
box hypervisor data collection are obtained principally by
reading from the /proc virtual file system from the hypervisor
instance. Samples were obtained at 1Hz frequency for each of
the features monitored and are enumerated in Table 1 with a
comprehensive explanation of feature derivation. The log of
feature observations is a simple comma separated value file with
columns based on observed features (utilization) and each row
corresponding to a single observation instant. Row entries were
therefore time coherent and columns are feature coherent (an
individual feature time series). Post-processing of the
instrumented workload that contain performance satisfaction
metrics in conjunction with the black box VM feature log
(sampled by the hypervisor) allows the VM feature log to be
annotated (or curated) as nominal or over-constrained. This
annotated data set forms the basis of our supervised machine
learning binary classification scheme.

Table 1: Observed Kernel Features. Features labeled in bold showed
observations in our out-of-band observation framework, while italicized
feature names indicate no usable observations on our hypervisor platform.

Feature Data Origin Description

CPU /proc/[pid]/stat Amount of time that this process was scheduled in both
kernel and user-blospace time as a percentage of all time
elapsed.

UT /proc/[pid]/stat Amount of time that this process has been scheduled in user
mode, measured in clock ticks. This includes guest time,
guest_time (time spent running a virtual CPU, see below),
so that applications that are not aware of the guest time field
do not lose that time from their calculations. Utime value
from /proc/[pid]/stat

ST /proc/[pid]/stat Amount of time that this process has been scheduled in
kernel mode, measured in clock ticks. Stime value from
/proc/[pid]/stat

CUT /proc/[pid]/stat Amount of time that this process's waited-for children have
been scheduled in user mode, measured in clock ticks. This
includes guest time, cguest_time (time spent running a
virtual CPU, see below). Cu_time value from /proc/[pid]/stat

CST /proc/[pid]/stat Amount of time that this process's waited-for children have
been scheduled in kernel mode, measured in clock ticks.
Cs_time value from /proc/[pid]/stat

GT /proc/[pid]/stat Time spent running a virtual CPU for a guest operating
system, measured in clock ticks. Guest_time value from
/proc/[pid]/stat

CGT /proc/[pid]/stat Guest time (GT) of the process's children, measured in clock
ticks. Cguest_time value from /proc/[pid]/stat

DLY /proc/[pid]/schedstat Obtained from /proc/pid/schedstat, indicates the time spent
waiting on a kernel run queue but not executing.

RCK /proc/[pid]/io The number of bytes which this task has caused to be read
from storage. This is simply the sum of bytes which this
process passed to read() and pread(). It includes things like
tty IO and it is unaffected by whether actual physical disk
IO was required (the read might have been satisfied from
page cache)

WCK /proc/[pid]/io The number of bytes which this task has caused, or shall
cause to be written to disk. Similar caveats apply here as
with RCK.

RBK /proc/[pid]/io Attempt to count the number of bytes which this process did
cause to be fetched from the storage layer. Done at the
submit_bio() level, so it is accurate for block-backed
filesystems.

WBK /proc/[pid]/io Attempt to count the number of bytes which this process
caused to be sent to the storage layer. This is done at page-
dirtying time.

RXB libvirt Received bytes from libvirt virDomainInterfaceStats
structure.

RXP libvirt Received packets from libvirt virDomainInterfaceStats
structure

RXE libvirt Receiver side errors from libvirt virDomainInterfaceStats
structure

RXD libvirt Receiver side dropped packets from libvirt
virDomainInterfaceStats structure

TXB libvirt Transmitted bytes from libvirt virDomainInterfaceStats
structure

TXP libvirt Transmitted packets from libvirt virDomainInterfaceStats
structure

TXE libvirt Transmission side errors from libvirt
virDomainInterfaceStats structure

TXD libvirt Transmission side dropped packets from libvirt
virDomainInterfaceStats structure

PF1 /proc/[pid]/stat The number of minor faults the process has made which
have not required loading a memory page from disk. Minflt
value from /proc/[pid]/stat

PF2 /proc/[pid]/stat The number of minor faults that the process's waited-for
children have made. Cminflt value from /proc/[pid]/stat

PF3 /proc/[pid]/stat The number of major faults the process has made which
have required loading a memory page from disk. Majflt
value from /proc/[pid]/stat

PF4 /proc/[pid]/stat The number of minor faults that the process's waited-for
children have made. Cmajflt value from /proc/[pid]/stat

BIO /proc/[pid]/stat Aggregated block I/O delays, measured in clock ticks,
expressed as a rate per time. Delayacct_blkio_ticks value
from /proc/[pid]/stat

 A time series plot of all non-zero time-series for one
experiment are shown in Figure 1. Series not shown, were static
(zero) observations, and were thus not applicable in our
experimental configuration.

II. Experimental Results
This section provides an analysis of our experimental results.
First, we present an overview of the multivariate data we
collected across workloads and our analysis approach. Second,
this section describes the features that were found to initially
have predictive power from our set of reasonable guess features
listed in Table X. Following that, an investigation into the effect
of feature observation variance on learned rules is presented
before moving on to quantify rule set accuracy and a brief
analysis of surprises encountered during experimentation
(related to assumptions about workload-specific predictive
features). This section concludes with an analysis of the effects
of observation sampling frequency on variation and the
portability of learned rule sets.

A. Multivariate Analysis Plots

For each workload run, feature-specific data was analyzed using
a series of automated plots and analysis using scalable vector
graphics (SVG) for manual inspection. This analysis included
time series plots of each feature to observe general trends in the
series as well as ensuring each observation was recorded
correctly (as evident in Figure 1). Box and whisker plots were
created for each feature to characterize the variance of feature
observations. Histograms of observed features were created as
well as a scatterplot of each feature against the determined
classification. The histogram plots of observed values were
performed to determine what, if any, type of distribution the
feature corresponds to. Many machine learning models assume
a Gaussian distribution, and surprisingly none of our
observations correspond to a Gaussian distribution. In the
scatterplot analysis of each observation, the corresponding
determined classification was encoded as a 1 or 0, with 1
meaning over-constrained or under-performing the experimental
threshold for successful virtual machine operation response, and
0 meaning nominal or well-performing virtual machine
response.

Moving beyond univariate analysis of features, an
examination of the multivariate data set (across all features)
from each experiment was performed. A representative example
Andrews plot for the HTTP workload is shown in Figure 2. A
type of signal, shown in teal (darker) distinguishes over-
constrained data values against background field of gold
(lighter) nominal values. This signal is what our machine
learning approach attempts to differentiate from the feature
vector observations. Since some signal seems apparent in the
plot, we next sought to answer if any individual variable had
overwhelming predictive power, or if features showed high
predictive correlation obviating the need for machine learning
on unnecessary features, or even at all.

Figure 2: Representative HTTP workload Andrews Plot. Given the high
dimensionality of this data, simpler approaches like 2D scatter plots,
histograms, and boxplots, are lacking. Teal (dark) lines represent over-
constraint, while gold (light) lines represents nominal VM performance.
Each attribute of an observational data set row is represented by a point on
the line, like a line chart, but the way data is translated into a plot is
substantially different. Each column from the data set is normalized
independently and smoothed. Andrews Plots are a rolled-down, non-
integer version of the Kent-Kiviat radar chart, or a smoothened version of
a parallel coordinate plot.

Figure 1: HTTP Experiment Select Time Series. The abscissa shows time in
seconds since the beginning of the experiment covering approximately 10
minutes in elapsed time for this experiment. Each vertically stacked subplot
shows the time series of observations from a single feature. Only those features
with nonzero series are shown. Surprisingly, several seemingly relevant
selections for features produced no signal in our measurement framework. Upon
investigation, many parameters are not relevant to KVM virtual machines
(though would likely be relevant in other hypervisors). Several time series
represented in the scale above show high correlation but are in fact distinct time
series when viewed at high resolution. The left most 1/6th of the chart
corresponds roughly to the boot-up process. All time series values sampled at
1Hz. Series labels correspond to the entries in Table 1.

The correlation matrix plots across all feature time series
highlight positive and negative correlations in the observations.
By focusing on intra-feature correlation, efficiency can be
increased by sampling only one element from a highly-
correlated feature set at runtime. Example correlation plots are

shown in Figure 3, 4, and 5. Since some data are related
(received bytes and received packets for instance) some degree
of correlation is expected. Our intuition was that an element
from a highly-correlated pair would not simultaneously occur in
machine learned rulesets. In other words, the machine learning
would focus on a single predictive feature from a set of highly
correlated features. Also by including the classification in the
correlation matrix we could determine if any individual feature
was overwhelmingly predictive, implying a simpler univariate
approach to over-constraint detection would be sufficient. As
shown, no individual feature was highly correlated to the
resulting learned binary classification making this problem
multivariate, nonlinear, and complex, thus suitable for a
supervised machine learning approach.

B. Initial Features Found to Have Predictive Power

Table 2 summarizes the predictive features from our initial
experimentation using 1Hz sampling across workloads.

Table 2: Features used in final decision tree classifier rules, separated by
workload. Marked values show predictive power in our experimental
configuration.

Kernel Feature HTTP/PHP
Web Server

SQL
Database Video Server (I/O)

CPU X X

UT

ST

CUT

CST

GT

CGT

DLY X

RCK X X

WCK X X X

RBK X

WBK X

RXB

RXP

RXE

RXD

TXB

TXP

TXE

TXD

PF1

PF2

PF3 X

PF4 X

BIO X X X

Figure 3: Feature Correlation Matrix HTTP Workload

Figure 5: Feature Correlation Matrix Video Workload

Figure 4: Feature Correlation Matrix SQL Workload

Listing 1, Listing 2, and Listing 3 show resultant rule sets from
the initial experimentation. Each enumerated rule within the
rules-sets shown is composed of attribute-value arithmetic
expressions and the associated classification when the arithmetic
expression is true. Each rule expression is followed by a
percentage value indicating rule accuracy. Note, that the final
rule labels (numbers) are arbitrary and no rules were withheld.

 For example, in the rules shown in Listing 1, we can begin
to read the rules as follows: Rule 13: if "WCK > 5124.52" and
“WBK <= 29.33" then "Over-Constrained”. According to the
generated C4.5rules, this rule is accurate 92.6% of the time, or

in other words, has a 7.4% margin of error. In all experiments,
classification 1 indicates over-constraint, and classification 0
indicates nominal performance. Note that for all rule sets shown,
if no individual learned rule was applicable, the default
classification assumes nominal or well-behaved VM
performance. As shown in Subsection D: Observation Sampling
Frequency, the default classification is relevant, as situations
with insufficient training data yield default classifications. With
trained rule sets, one can invoke the bundled consultr rule
interpreter application from the C4.5 runtime, or take the
approach outlined in [TBDT] to compile custom embodiments
of these rules into embeddable, pre-compiled shared objects for
use at runtime on a per-VM basis as specified in a virtual
machine contract [CONTRACTS].

 The remainder of this section attempts to provide the authors
intuition on what was expected from the learned rule sets, and
what was empirically observed. While not attempting to provide
an exhaustive post-hoc analysis of each rule, we do want to
convey some surprises we encountered while explaining our
intuition. Our intuition is provided to contrast to the reader’s and
emphasize the difficulty in forecasting workload performance
based on the nuanced interplay of available resources. We will
return to major unexpected results from these rules and Table 2
in Section E: Experimental Surprises.

 Our intuition of the HTTP workload was that some
combination of delay and networking characteristics would
dominate the rule set. The results were more nuanced than we
had expected. Listing 1 has rules comprised of CPU
consumption (CPU), blocked I/O (BIO) and memory writes (in
character and bytes as WCK, WBK respectively). Rule 2, the
lengthiest rule indicates over-constraint in a narrow range of
CPU consumption, when blocked I/O is high, and CPU
scheduler delay is high. Simpler rules like Rule 1 and 2 indicate
that blocked I/O and memory pressure below a certain threshold
indicated an HTTP VM is not likely to be nominal. Similarly,
Rule 6 indicates low scheduling delays on the processor with
little memory writes are also indicators of nominal behavior.

 Our intuition for the SQL workload was that the rules would
be generally governed by blocked I/O (BIO) and CPU
properties. As shown in Listing 2, our intuition did not entirely
match reality. As rules were indeed governed by blocked I/O,
but memory characteristics made the remainder of the features
of interest. From examination of Rule 2 and 3 we can see a
machine learned tipping point for this workload in the WCK
property, when in conjunction with high blocked I/O, causes a
classification to transition from nominal (Rule 2) to over-
constrained (Rule 3).

 Having little practical experience with the file streaming
workload prior to this research endeavor we had no firm
intuition on what to expect. Interestingly the output Rules in
Listing 3 indicate that combinations of CPU consumption
(CPU), a page fault type (PF3) and blocked I/O (BIO) make up
most the rules. Upon reflection, these rules make some intuitive
sense since page faults may be related to requesting un-cached
content on disk, or requesting content which has aged out.
Similarly, processes blocked on I/O seem a relevant indictor of
over-constraint for a workload whose sole purpose is to stream
I/O content.

Rule 13:
 WCK > 5124.52
 WBK <= 29.33
 -> class 1 [92.6%]

Rule 10:
 CPU > 0.6667
 CPU <= 1.3333
 DLY > 16.59
 WCK > 3103.53
 BIO > 98.33
 -> class 1 [91.2%]

Rule 3:
 WCK > 3103.53
 WCK <= 4104.06
 BIO > 98.33
 -> class 1 [89.1%]

Rule 1:
 WCK <= 3103.53
 -> class 0 [99.6%]

Rule 16:
 RCK > 0.13
 WBK > 29.33
 -> class 0 [99.1%]

Rule 2:
 BIO <= 98.33
 -> class 0 [98.4%]

Rule 6:
 DLY <= 16.59
 WCK <= 5124.52
 -> class 0 [97.8%]

Listing 1: HTTP Workload Decision Tree Rule Set

Rule 5:
 RCK > 50.77
 WCK > 1.39
 -> class 0 [99.2%]

Rule 1:
 BIO <= 99.67
 -> class 0 [98.8%]

Rule 2:
 RCK <= 50.77
 WCK <= 1.73
 -> class 0 [95.8%]

Rule 3:
 RCK <= 50.77
 WCK > 1.73
 BIO > 99.67
 -> class 1 [88.2%]

Rule 2:
 BIO <= 98.33
 -> class 0 [98.4%]

Rule 4:
 WCK <= 1.39
 BIO > 99.67
 -> class 1 [31.4%]

 Listing 2: SQL Workload Decision Tree Rule Set

C. Effect of Observation Variance on Learned Rules

 Since the data sets collected are inherently multivariate, and
many of the features sampled are far more variable than others,
experimentation was necessary to explore the relationship
between feature variability and machine learned decision tree
rules. One method for understanding these workload traces is to
visualize the features sampled as a set of coordinates in a high-
dimensional data space using 1 axis per variable. This technique
is known as Principal Component Analysis (PCA) [PCA]3.
Using this approach, a PCA plot constructs a lower-dimensional
projection of the data when viewed from a particularly
advantageous viewpoint highlighting variance. In keeping with
convention, each workload trace feature was mapped into the
range [-1, 1] before plotting the PCA (lowest mode) to determine
the features with the largest variance.

In the HTTP experiments PCA results indicate a top tier
cluster of influence from TXB, TXP, RXB, RXP, and PF3
features which dwarfed the variance of the remaining features.
The conclusion is that our choice of PHP workload variance was
highly dynamic with respect to network features and page fault
fluctuations. Since the workload was constructed to drive web

3 PCA is also known by other names depending on the field of application including but not limited to: the discrete
Kosambi-Karhunen–Loève transform in signal processing, the Hotelling transform in multivariate quality control, proper
orthogonal decomposition in mechanical engineering, and eigenvalue decomposition in linear algebra.

traffic over intervals with rapidly increasing numbers of clients
over TCP/IP connections this makes intuitive sense.

In contrast, SQL experimentation showed the large variance
in the PF3, and BIO features. Workload variance was further
impacted in a second tier grouping by network performance of
both transmission and receipt features, ahead only slightly to a
third tier grouping of memory-related features. This makes some
intuitive sense as the workload is I/O bound in nature and both
page faults and blocked I/O counts can reasonably be expected
to rise as the number of clients were increased making SQL
requests for dynamic table data until over-constraint conditions
were observed in the workload.

The PCA for the file streaming workload demonstrated a
cluster of large magnitude vectors forming a top tier with RXP,
TXP, TXB, RXB in descending order. These were followed by
a second tier with UT, and DLY. A much smaller magnitude was
shown for BIO, PF3 followed up with the smallest magnitude
vectors for WBK, RBK, PF4, RCK.

In all three of our workload test cases, comparing the PCA
feature magnitude and the learned rules in Listing 1, 2 and 3,
indicates that feature salience is therefore unrelated to variance
for this dataset and problem domain, implying other features of
interest might be incorporated into the feature vector of
observations with little concern for the variability of the feature
impacting the resultant classifier.

D. Rule Set Accuracy

In addition to generating rulesets, the C4.5 runtime also provides
measures of rule accuracy against training data reserved for
testing at rule generation time. Table 3 provides an analysis of
the rule set error and information about the observations used to
generate the rule sets. The column labeled “Tested” indicates the
number of data rows, or time steps, used in training the classifier
with nominal and over constrained data sets.

Workload Tested Errors Error

Percentage
False

Positive
Count

False
Negative

Count

HTTP 547 6 1.1% 1 5

SQL 260 2 0.8% 1 1

VIDEO 1009 24 2.4% 0 24

Table 3: Decision Tree Accuracy Against Training Data. All values are
for a 1Hz sampling regime.

Rule 9:
 RBK > 52 PF3 > 341.33
 BIO <= 31.67
 -> class 1 [87.1%]

Rule 11:
 PF3 > 368.33
 BIO > 56.33
 BIO <= 78.67
 -> class 1 [79.4%]

Rule 5:
 CPU > 1
 PF3 <= 341.33
 BIO > 56.33
 -> class 1 [50.0%]

Rule 1:
 RBK <= 12
 -> class 0 [99.8%]

Rule 3: PF3 > 320.67
 PF3 <= 341.33
 BIO <= 56.33
 -> class 0 [99.7%]

Rule 6:
 CPU > 16.3333
 PF3 <= 341.33
 -> class 0 [99.6%]

Rule 7:
 WCK > 0
 -> class 0 [99.4%]

Rule 8:
 RBK <= 52
 BIO <= 31.67
 -> class 0 [98.8%]

Rule 10:
 PF3 > 341.33
 PF3 <= 368.33
 BIO > 31.67
 -> class 0 [96.1%]

Listing 3: Video Streaming Workload Decision Tree Rule Set

 Table 4: External Vs. Internal Networking Experiment

Elaborating further on Table 3, the HTTP workload consisted of
547 complete sets of feature observations, each comprising a
single row in the VM log. Thus, the experiment took 547
seconds to complete given the 1Hz sampling regime used for
these experiments. The “Error” column indicates the sum of
false positives and false negatives encountered during rule
testing performed by the c4.5 runtime at rule generation time.
These values are further broken out into the “False Positive
Count” and “False Negative Count” columns, respectively. The
“Error Percentage” column indicates the percentage of
classifications that would be in error if the rule set was adopted.
As reported in Table 3, in general low error percentages are
observed while there is a distinct trend in errors toward false
negatives.

E. Experimental Surprises

Referring once more to Table 2, the authors encountered a few
surprises with the analysis as shown, having expected to see
many more of the features outlined in Table 1 to have some
predictive value (as evident by writing the data collection
routines for what seemed a relevant set of parameters for
determining VM health) unencumbered by previous experience
with this approach as well as no practical experience working
with observations of most of the features sampled. Perhaps
most surprisingly was the total lack of network related features
that we had expected to see in at least the HTTP workload. To
determine the effect of rule set determination on internal vs.
externally driven workloads we performed the HTTP workload
as driven by an external client using a different bridge network
exposing the VM to the outside network, effectively making the
guest, the VM under study, and an external workload generation
machine act as peers on a flat network. The data collection
scheme remained unchanged, save for the experimental
networking setup. The results of this analysis are shown in
Table 4. As can be seen this change yielded predictive power in
a network receipt feature (RXB) as well as a network
transmission feature (TXP). The results in Table 4, combined
with other time series plots not shown here further prove the
correctness of our data collection routines for these features, but
demonstrate that it is not obvious which features will show
predictive power in learned rulesets. Interestingly, note the
indication of PF3 as predictive for this variant while it was not
selected in the intra-hypervisor experimental HTTP rule set.
While we would intuitively expect some level of transmission
and receipt features to be relevant in all HTTP workload
variants, the sensitivity of features to hardware platform for the
HTTP test was a surprising result. Error rates were small in both
the internal and external networking experiments and generally
consistent across HTTP variations with slightly more
intuitively expected features present in the off-platform client
scenario (External Networking). In retrospect, using a decision
tree classifier has proven useful to ourselves since a SVM based
classifier would work as a black box with no intuition or
surprises to guide further investigation.

F. Effects of Observation Sampling Frequency Variation

To determine the effects of feature observation sampling
frequency on learned decision tree rules, initial sampling for all
VM features exposed to the hypervisor through the proc and
libvirt interfaces occurred at 1Hz. Intuitively this seemed a
reasonably high sampling frequency and was selected, in part, to
determine the computational overhead of “high-frequency”
sampling. Classifiers were trained as outlined previously, while
data sets were post processed (subsampled) by windowing the
data into 3, 5, 10, and 60 second data sets to understand the effect
of decreased temporal resolution in feature sampling regimes.
No averaging was done over the interval of discarded samples
to replicate a lower sampling frequency over the same
experimental duration. The results of this experimentation are

HTTP
Feature

1HZ HTTP INTERNAL
NETWORKING

1HZ HTTP EXTERNAL
NETWORKING

CPU X X

UT X

ST

CUT

CST

GT

CGT

DLY X X

RCK X X

WCK X X

RBK

WBK X X

RXB X

RXP

RXE

RXD

TXB

TXP X

TXE

TXD

PF1

PF2

PF3 X

PF4

BIO X X

ERROR % 1.1%
(6/547)

1.4%
(4/287)

shown in Table 5. There is no simple summary to be provided
for the nuanced interplay of sampling regime and predictive
features shown in Table 5. However, it is evident that varying
the observation sampling frequencies yields a direct and
measurable impact on decision tree rules, including accuracy
against training tests as well as which features show predictive
power. The most commonly predictive feature was found to be
blocked IO. Since each of our workloads had an I/O component
this is perhaps not entirely surprising. The analysis of rulesets
and relating them to intuition and sampling frequency, while
interesting, is an aside to the core focus of this work, which was
providing reproducible VM over-constraint detection in IaaS
VMs so we have intentionally limited discussion here to obvious
trends.

 In Table 5, sampling was also performed at 1/60 Hz but in
all cases, the classifier failed to learn any pattern in over-
constraint, and assumed a nominal classification by default.
There are two reasonable explanations for this. The first is to
assume that the data was simply too sparse, and through
sufficient replication of the same experiments, one could build a
classifier at the expense of experimental data collection and
curation time. A second possible explanation is that the
fundamental patterns in the operating system data are on a time
scale that is so much faster than once per minute, that transient
events indicative of failure/over constraint situations get lost or
missed entirely. Another observation is that by decreasing the
sampling rate, our machine learning implementation learned a
rule set comprising fewer features.

G. Rule Set Portability

To test the portability learned classifiers, a series of

portability experiments were performed in which training and
classifier learning occurred on a small laptop configuration (4
cores, i5 processor, 2.67 GHz, 3GB RAM). The learned
classifier and associated VM were then transferred to a larger
server (24 cores, Xeon ES02540 @ 2.5GHz, 94GB RAM) and
underwent the VM workload once more (HTTP, SQL, Video
Serving). However, in this experiment the log records from the
VM under test were used as input to the previously trained
classifier rules that were generated on the small host
configuration using the same 1Hz sampling interval. In these
experiments, the moved classifiers were shown to be portable
across hosts.

This is in part due to the design of the input data, that the
classifiers are trained on. These training data, or feature values,
are not expressed as absolute values or counters as exposed
natively in /proc or libvirt but instead converted to rates per
elapsed wall clock time of the nominal sampling frequency.
Many of the features sampled are constantly increasing values
as they are simply a type of counter (e.g., page fault counters).
Using raw counter values would not work in a VM setting
because as the VM ages, the counters indefinitely increase.
Rules generated from this data would improperly focus on to the
absolute value of the counter type features and are therefore not
be applicable to an older VM instance whose counters were
necessarily higher in magnitude (assuming the same average rate
of change in the features over time throughout the VM lifecycle.

To make these ever increasing counter relatable across systems
is to convert them to the increase per unit time. Similarly, other
features that could be expressed as a percentage of absolute
physical capacity (CPU related features) were converted into
percentages making relation across hosts possible. By using
percentages of physical limitation where possible, and rates per
unit time everywhere else, we collect data which is abstracted
from the physical host and from the age of the VM, and thus
rules generated are applicable early in the VMs lifecycle, as well
as for long lived VMs with uptimes of months or years).

The results of this experimentation imply classifiers trained
on rates which are comparable across host platforms should be
host-agnostic within the same general class of host. While we
did not have access to exotic hardware, we assume there are
limits to this host-agnosticism when drastically different
hardware platforms are used (for instance switching to solid state
hard drives when training on a host with traditional rotating
media). Other hardware platform changes likely to cause
impacts to ruleset host-agnosticism include VMs which access
file systems over SAN storage vs local media etc. More
experimentation across a broad variety of hardware
configurations would be required to definitively explore the full
nature of classifier portability. Based on the authors’
observations of commercial data centers, IaaS host servers are
often relatively homogeneous hardware. It has been observed
that many hosting data centers purchases full racks of identical
servers. It is therefore reasonable to suggest confining VMs and
learned classifiers to a cage, rack, or cluster of generally
comparable hardware such that sufficiently host-agnostic
classifiers could be viable in practice.

III. Conclusions and Future Work
The work presented here sought to answer several fundamental
questions. The analysis presented indicates low error rates can
be achieved in automated detection of over-constrained VM’s
using binary decision tree classifiers trained on a set of
seemingly relevant features exposed to the hypervisor. This
technique enables black box (out-of-band, or agentless)
classification of VM over-constraint at runtime as a trigger for
remediation. Further, this work conclusively demonstrated that
the training sampling regime has a large impact on classifier rule
generation. Specifically, it was demonstrated that 1Hz sampling

was sufficient while 1/60 Hz sampling was insufficient in all
cases. Furthermore, the evaluation overhead at 1Hz was
negligible using the lightweight proc and libvirt based
instrumentation that should easily scale to hundreds of VMs
without perceptible hypervisor performance impact. This work
also demonstrates that when training classifiers in this fashion,
it is important to construct a realistic training workload that will
behave in the same way as production workloads with respect to
network access from outside the hypervisor or within a
hypervisor since those training decisions make a marked impact
in ruleset determination of predictive features by the classifier

Table 5: By varying the feature collection frequency a marked change in the learned rules of the c4.5 classifier is evident. Note that no classifier generated a
viable rule set at the 1 Minute sampling interval, and in the case of the SQL workload 1/10 Hz sampling also failed to generate a viable rule set.

VM
Feature HTTP Workload SQL Workload Video Server Workload

Sampling
Interval

1
sec

3
sec

5
sec

10
sec

1
sec

3
sec

5
sec

10
sec

1
sec

3
sec

5
sec

10
sec

CPU X X X

UT

ST

CUT

CST

GT

CGT

DLY X

RCK X X X X

WCK X X X X X X

RBK X X X

WBK X X X

RXB X

RXP X X

RXE

RXD

TXB

TXP X X

TXE

TXD

PF1

PF2

PF3 X X

PF4 X

BIO X X X X X X X X

ERROR
%

1.1%
6/547

6%
11/183

1.8%
1/55

1.8%
2/110

0.8%
2/260

0%
0/87

1.9%
1/53

3.7%*
1/27

2.41%
24/1009

3.3%
11/337

2.0%
4/292

2.0%
2/101

runtime. The authors would also like to probe the limits of
hardware applicability of generated rule sets, for instance
switching a generated rule set to a host with solid state hard
drives from a host with traditional rotating media.

 Through analysis of feature correlation matrices and
corresponding generated rule sets it was demonstrated that
features selected within rule sets tend to show low cross
correlation (below 0.4) while no individual observed value
showed high direct correlation with classification. One possible
interpretation is that while there was no “magic bullet” feature
that can be used more simply to infer VM health from the
hypervisor context, a focused selection on just the right features,
surprising as they might be, can be very predictive. Furthermore,
these predictive models were successfully trained on a small
capacity system and the results moved to a larger capacity
production server, and remained functional.

 The authors note that the classifier chosen determined
predictive feature sets that were relatively small in comparison
to the total number of sampled features that were hypothesized
to be relevant for this classification effort. Furthermore,
generated rule sets were generally short, comprised of between
6 and 9 rules, with each individual rule consisting of at most 5
arithmetic expressions. The authors posit that readability of rules
from a binary decision tree classifier would generally be
desirable in comparison to a SVM-like classification scheme
wherein the resulting learned rule set cannot be crisply
articulated to system administrators who, when informally
surveyed about the desirability of such an assistive framework
(with remedial VM action trigger automatically) generally
expressed derision at autonomous system management, however
effective, whose policy cannot be explained simply.

 Further, our work has demonstrated that VM creators need
not ship the workload used to create the classifier with the VM
due to abstraction of the learned rule set that operates on black-
box VM data without requiring VM instrumentation at
deployment time. However, exploring shippable training
workloads that could be bundled with a VM for re-training on
new classes of hardware may be of interest as new hardware
platforms are developed. With the system design used here, the
option remains open, but not strictly necessary.

 This work is an ongoing investigation into VM
management, with the intended application toward triggering
agentless, automatic VM rebalancing within an IaaS data center
via live-guest migration. However, the approach taken herein is
not entirely specific to VMs given that many of the values we
use for training and runtime evaluation are simply /proc entries,
and those values which were of libvirt origin may likely have
suitable alternative API for general purpose per-process network
accounting. If so, the approach demonstrated might apply to
non-VM generic workloads encapsulated as individual
processes on a host. Thus, extensions to this work may be related
in spirit to that of [KUNDU] although that line of inquiry
remains beyond the focus of our present research agenda into
IaaS cloud management.

IV. References
[1] [ARM] The Open Group. Application Response

Measurement — ARM, 4.0 Version 2.
http://www.opengroup.org/management/arm/, 2007.

[2] [KILLIAN] T Tom J. Killian created the first
implementation of a process file system. It was for Eighth
Edition UNIX. See T. J. Killian, "Processes as Files,"
USENIX Summer Conference Proceedings, Salt Lake
City, UT, USA (June 1984).

[3] [LIBSVM] Chih-Chung Chang and Chih-Jen Lin,
LIBSVM : a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology,
2:27:1--27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[4] [QUINLAN] Quinlan, J. R. C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers, 1993.

[5] [TBDT] Eli. M. Dow, and Tim Penderghest.
"Transplanting Binary Decision Trees." Journal of
Computer Sciences and Applications 3.3 (2015): 61-66.

[6] [PATCLASS] R. O. Duda, P. E. Hart, and D. G. Stork.
Pattern Classification. Wiley, 2000.

[7] [MITCHELL] T. M. Mitchell. Machine Learning.
McGraw-Hill, 1997.

[8] [QEMU] F. Bellard. Qemu, a fast and portable dynamic
translator. In USENIX 2005 Annual Technical
Conference, FREENIX Track, pages 41–46, 2005.

[9] [KVM] - A. Kivity. kvm: the Linux Virtual Machine
Monitor. In OLS ’07: The 2007 Ottawa Linux Symposium,
pages 225–230, July 2007.

[10] [PHP] - PHP website accessed January 2017 at
http://www.php.net/.

[11] [MYSQL] – MySQL Database Project.
https://www.mysql.com/

[12] [APACHE] – Apache HTTP Server Project.
http://httpd.apache.org/

[13] [AB] Apache HTTP Server Benchmarking Tool User
Manual-
http://httpd.apache.org/docs/2.4/en/programs/ab.html

[14] [ABF] - Using Apache Bench for Simple Load Testing
February 05, 2009.
http://www.petefreitag.com/item/689.cfm

[15] [IOZONE] Martin, Ben (2008-07-03). "IOzone for
filesystem performance benchmarking". Linux.com.
Retrieved 2016-2-06:
https://www.linux.com/news/iozone-filesystem-
performance-benchmarking

[16] [IPERF] iperf3 utility home page:
http://software.es.net/iperf/

[17] [PCA] Pearson, K. (1901). "On Lines and Planes of Closest
Fit to Systems of Points in Space" (PDF). Philosophical
Magazine. 2 (11): 559–572.
doi:10.1080/14786440109462720.

[18] [KUNDU] Kundu, Sajib, et al. "Modeling virtualized
applications using machine learning techniques." ACM
SIGPLAN Notices. Vol. 47. No. 7. ACM, 2012.

[19] [CONTRACTS] J. Matthews, T. Garfinkel, C. Hoff, and
J. Wheeler, Virtual machine contracts for datacenter and
cloud computing environments, in Proceedings of the 1st
Workshop on Automated Control for Datacenters and
Clouds, 2009, pp. 25-30

[20] [AP] García-Osorio, César; Fyfe, Colin (2005).
"Visualization of High-Dimensional Data via Orthogonal
Curves" (PDF). Journal of Universal Computer Science. 11
(11): 1806–1819.

