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Initial Motivation

Partially inspired by Gladwell's book, The Tipping Point [1], in which he discusses
how life can be thought of as an epidemic. Some criticism exists as to Gladwell's
rigor, however for our use it is about inspiration and motivation not accuracy.

The Books Key Points “for our purposes”

o Actors (Connectors, Mavens, Salesmen).
e Information spreads like disease.
o Ideas reach a tipping point (critical mass).

Let’s Face It - Social Networks Are Fun

e \We are a social species, that enjoy communicating and self adulation.
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Problem Questions

e Are there information security applications for social network data-mining?

v/ Can we detect malicious social network use?

v/ Can we analyze the spread of a major malware campaign?

¥¢ Can we detect phishing in near-real-time
e Can we determine how information spreads on these networks?
¢ Can we determine if a user is unique?

KX s there a way of classifying users based on actor types?

¢ Can we determine who the opinion leaders or influencers are?
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Actor Descriptions
e Isolate (Developmental Psychology) [27]
o Connector (Tipping Point) [1]
— Star (Small World Problem) [26]
— Bridge (The Hidden Organizational Chart) [2]
— Liason (The Hidden Organizational Chart) [2]
e Maven (Tipping Point) [1]

e Salesmen (Tipping Point) [1]
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Actor ldentification Example: Liaison

e Liaison: (Noun not Verb)

— A person (b) who connects party 1 (a) and party 2 (c) through a
requested introduction.

— Like requesting for a first level contact on Linkedin to introduce you
to someone in their network

e Not all social networks have a special features like Linkedin, we need to
derive this relationship... Time is important!

e Previous methods did not take event sequence into account
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Actor (b): Liaison - Logical

For the graph (a,b,c), It will at some time be the case that edge (a,b) exists and

It will at some time be the case that edge (b,c) exists and It will at some time be

the case that edge (c,a) exists and It has always been the case that edge (c,a)
did not exist.
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Actor Ildentification Example: Liaison
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SELECT 70 7 7 0 7 2 RDF Query
WHERE

[ :source ?a ; :target ?b ; :hour 7t ] .

[ :source ?b ; :target ?c ; :hour ?t1 ]

[ :source ?c ; :target ?a ; :hour 2t2 ]

FILTER( ?a 1= ?b 8 ?b 1= ?c )

FILTER( ?t0 < ?t1 8& ?tl < ?t2 )

FILTER( NOT EXISTS {

[ :source ?c ; :target ?a ; :hour ?tx ]

FILTER( ?tx < ?t0 || ?tx < ?t1)
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Actor ldentification Continued
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Actor ldentification Sample Logics

Actor Type Logic

Jookate VaIsolate(a) <+ G [Vbedge(a,b)]] i
Comnector: Star Va (Star(a) ¢ =3b (cem(b) > eent(a) ) ) 2

e # e hedge (b.e) Medge' (b.e) A
Connector: Bridge Wb | Bridge(h) + Jc.e ( x (edge’(bx) = (x=cVa=e)) A (3
ceni(ir) = ceni{c) A ceni(b) > ceni(e)

Connector: Liaison (Prospective) Wa.b,c (Liaison(a.b,c) + F(edge(a. b) A F (edge(b.c) A F (edge(c.a) fn Hoedge(c.a))))) (4
Connector: Liaison (Retrospective) a. b.c (Ligison(a, b_c) ++ P(edge(c.a) A H-edge(c.a) A Pledge(b,c) A Pedge{a b)) (5)
Maven win (Maven(m) +» 3, g ¥ (edge(i.m.msg) \F (edge(s, m) AF (edge(m. g.msg))))) (6)
Salesman e {Salesman(s) + %, gF (edge(i,s, msg) A F(edge(s, g, mag) A Hoedge(g,5)))) o]
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Established Dataset

e In 2012 we collected 165 TB of Twitter Data (Uncompressed)
— 175 Days Collected, 147 Full Days
* Estimated 45 Billion Tweets
— Estimates place total Twitter traffic at 175 million tweets/day-2012

— Daily collection rates between 50% and 80% of total traffic

it Capture Log: Tweets er Minute
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Actor ldentification Example: Results

o Remember those pretty plots from earilier?

o We take our entire dataset and filter it for 31 days between February 20th

and March 20th, and for only #KONY2012 related Tweets

Query Number of Records
Edges 1,070,910

Isolates 48,060

Liaisons 37,530

Mavens 1,790

Salesmen 391

Approach Time
Conversion of CSV to RDF using Python 18 sec
RDF file procd. w/Jena (8 thr.) 6.285 min
RDF file procd. w/RDFLib (1 thr.) 13.151 hr
RDF file procd. w/RDFLib (8 thr.) 35.854 min
Serialized CSV-RDF procd. w/RDFLib (1 thr.) | 13.159 hr
Serialized CSV-RDF procd. w/RDFLib (8 thr.) | 36.762 min
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Conclusions

e \We aimed to answer the following subset of questions when we started this
portion of our work:

— Can we come up with a way of classifying users based on actor types?
— Can we determine who the opinion leaders or influencers are?

— Can we determine how information spreads on these networks?
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Future Work

® We have established a more perminant test facility and dataset location in the COSI (Clarkson Open Source Institute)

o We are pursuing the semantic side of social network analysis

— Currently only one true SNA semantic ontology exists that is openly available and it's only on paper.

— We are planning on rolling both the actor and event analysis into one approach which will be part of a new
ontology

o We have grown our team to include a number of individuals affliated with multiple institutions.

o We recently finished a project using machine learning to process URLs and web-pages on-mass to detect Phishing

o We recently finished a project that analyzed Twitter accounts for duplication, or single ownership
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o Twitter JSON Key Fields

profile_link_color
In_reply_to_screen_name
In_reply_to_status_id
In_reply_to_status_id_str
In_reply_to_user_id
profile_background_color
profile_background_title
default_profile_image
follow_request_sent
friends_count
profile_image_url_https
profile_background_image_url
background_image_url_https
profile_image_url
sidebar_border_color
sidebar_fill__color
profile_text_color

url

Coordinates

Geo

text

entities

place
contributors_enabled
default__profile
description
followers_count
geo_endabled
listed__count
notifications

name

lang
use__background_image
screen_name
show_all_inline_media
utc_offset

verified
time_zone
statuses_count
Contributors
protected
trunkated
retweeted
id_translator
location
favorites_count
following
retweet_count
created_at
Favorited
Id_str
Created_at

Id
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o BEK Infectious Account Visualization
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o Coalmine User Interface

History
Entar Search Criter

Analysls Results Table [te

fextat - Lext AT | Bpart
| Twitter(zazaag |
usar craated at id skr
Carocjuorazid Sun Mar 27 22,1245 4+ 0000 .. [5Z120066040037110 |all ef tho lightc
P¥Tennia_the Sur Mar 27 16:42.00 40000 .. [52047982501830000 [That's What | em.

search Resuls: Fol | cGravar Sur Mar 27 16:45:45 +0000 ..
B walMat secbias d [cBe stawi Sun Mar 27 16:58:31 +0000 ...
4 @arnejiccerkadc | | Imjustjesh Sun Mar 27 2312146 +0000 ...
5. @Hassylkuteness 1| Hey itsNina Sun Mar 27 23,3114 +0000 ...
& @gemmapdizer the [Feamvaria Sun Mar 27 23;47.45 +0000 ..,
J @kamila_ amght | [fighskulchick Man Mar 28 00:03:24 + 0000 ...

& Although 1 don't re.
o, @NEacarze Aman
10 @WICCArTyEmImal

Mslcomaf irst
QDsHizs

Sun Mar 27 22:46:12 +0000 ...
Sun Mar 27 23:06: 37 +0000 ..
Sun Mer 27 23:12:33 +0000 ...

rescoFisscol38
5howoffPale

3 —

Sun Mer 27 1Gi45.23 +0000 ...

adambuerger

Sun Mar 27 163302 +0000 ..,

55048674431311872
52148935640055217
52150718638581120
5215487557311 4602

arsenal

e is the
gl of the |i

All of the lighte
- Is he autistic?
Al of the Ights

SE1500126910L1200

Al of the ['ghta

S213038464 3015777
SZL4452063 0816784

All of the lights
Here shi= go again

5714602601 41 2480

all of the Ights

|152048592512073504

220454 743533875808

@AyssAyoo She Fell Az
Doasaryone knowwhel

| Clarkson University

22/28



o Malware Infection Vector Detection Continued

Sample BEK Infectious Twitter Account Message Value Entropy

Baseline Twitter Average Message Value Entropy

Sampele Account X2 Messages Minus Special Characters and Links.

‘Sample Account X Messages Minus Special Characters and Links
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o Malware Infection Vector Detection Continued

Twitter Infectious Versus Non-Infectious Account Usage
o Sample Set - (100 Infectious Accounts, 100 Non-Infectious Accounts)

Percentage of Useage

BEK Infectious
Account Type

mMobile Web
aWeb
@iphone
mOther

Total Tweets Processed
Total Number of Unigue Accounts

Number of Suspicious Accounts

Total Number of Suspicious Tweets
Calculated Percentage of Infectious Accounts
Calculated Percentage of Infectious Tweels

Dataset Processing Time with Regex
Dataset Processing Time w/Fig. 5.10 filter

6.531,319.202

265,163,290

729,609
B.286.480
0.000275
0.127

22H 48M
23H2IM
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Event ldentification

e Still in the initial stages of this part of our work

e Given a general topic, “search term, hashtag,” we can identify most of the related content from the dataset

o We have a means for alerting on all new posts regarding that term

o We can dig historically through the data and trace the path that an itea took

o We can identify the influential individuals, “accounts,” that played a part in the information spread

e Our test case was the KONY2012 Event
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Event ldentification Continued

Interest over time

The number 100 represents thepeal search ferest

Number of KONY related hash-tags
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Event ldentification Continued

o Top 10 Twitter Accounts, sending and receiving KONY2012 related Tweets

Directed @ Account Names In-Degree Origin Account Names Out-Degree
tothekidswho 625 twittonpeace 47
Invisible 125 interhabernet 44
youtube 118 DailyisOut 44
helpspreadthis 95 MEDYA_TURK 42
justinbieber 83 haber_42 35
prettypinkprobz 48 gundem_haber 30
ninadobrev 48 twittofpeace 22
MeekMill 47 korkmazhaber 19
ladygaga 43 tarafsiz_haber 14
KendallJenner 39 Son__DakikaHaber 13
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Event ldentification Continued

o Top 10 Twitter Accounts, retweeting and being retweeted regarding KONY2012

Retweeting Accounts In-Degree Message Source Out-Degree
MedyaKonya 8 Stop, Kony 2642
twittonpeace 8 tothekidswho 753
haber_42 7 konyfamous2012 716
gundem_haber 7 Kony2012Help 615
korkmazhaber 7 stop, kony 353
DailyisOut 7 WESTOPKONY 225
interhabernet 6 zaynmalik 221
KONYA_ZAMAN 6 iSayStopKony 127
konya__time 6 Stop_2012_Kony 80
konyagazetesi 5 Kony_ Awareness 72
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