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ABSTRACT

Virtual machine (VM) live migration is a critical feature for
managing virtualized environments, enabling dynamic load
balancing, consolidation for power management, preparation for
planned maintenance, and other management features. However,
not all virtual machine live migration is created equal. Variants
include memory migration, which relies on shared backend
storage between the source and destination of the migration, and
storage migration, which migrates storage state as well as memory
state. We have developed an automated testing framework that
measures important performance characteristics of live migration,
including total migration time, the time a VM is unresponsive
during migration, and the amount of data transferred over the
network during migration. We apply this testing framework and
present the results of studying live migration, both memory
migration and storage migration, in various virtualization systems
including KVM, XenServer, VMware, and Hyper-V. The results
provide important data to guide the migration decisions of both
system administrators and autonomic cloud management systems.

Categories and Subject Descriptors

D.4.8 [Performance]: Measurements —  benchmark,
quantification.

General Terms

Management, Measurement, Performance, Design,
Experimentation.

Keywords

Virtualization, Live migration, Performance, Quantification.

1. INTRODUCTION

Virtualization has played a core role in cloud computing, enabling
the portability of workloads from local data centers to managed
cloud computing environments, whether public cloud or private
cloud. Vendors of data center class virtualization systems like
KVM, XenServer, VMware, and Hyper-V, value live migration as
an important selling point in their offerings to customers. Virtual
machine live migration provides cloud service providers with
substantial flexibility in managing their backend infrastructure
and has been a substantial area of active research in recent years
[15,16,17, 18, 19,20, 21, 22, 23].

Live migration allows a running VM to be moved from one
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physical host to another. VMs may be moved to better balance the
load of current workloads across available servers. VMs may be
moved to consolidate VMs onto a smaller number of physical
servers, allowing some servers to be shut down completely, thus
saving power. VMs may be moved to enable preventative
maintenance on some servers or to facilitate the upgrade of some
machines.

The high-level goal of live migration is to minimize service
disruption, enabling the VM to continue serving requests as it
migrates, and hiding the decisions of backend management and
placement from users. However, not all virtual machine live
migration is created equal. One live migration technology could
seek to minimize the time a VM is unresponsive, while another
could seek to minimize the end-to-end migration time or the
network resources consumed by the migration.

Live migration technologies can vary substantially from vendor to
vendor. Variants include memory migration that relies on shared
backend storage between the source and destination of the
migration, and storage migration that migrates storage state as
well as memory state. Migration technologies vary in the degree
to which they can maintain on-going network connections during
migration, and the requirements placed on the networking
infrastructure at source and destination.

Many of the diverse properties of live migration can be unclear
without actual hands-on experimentation. We find that the
technical descriptions provided by vendors can be incomplete and
in some cases inaccurate.

To facilitate hands-on experimentation and testing of live
migration on various hypervisors, we have developed an
automated testing framework that can be used with any
virtualization system. Our test suite measures important
performance characteristics of live migration, including total
migration time, downtime, or the time a VM is unresponsive to
network access during migration, and the amount of data
transferred over the network during migration.

We apply this testing framework and present the results of
studying live migration, both memory migration and storage
migration, in various virtualization systems including KVM,
XenServer, VMware, and Hyper-V.

2. BACKGROUND
2.1 What Is Migrated

For all forms of live migration, it is important to consider how
migration handles four key aspects: CPU state, memory state, and
storage content.

CPU state: The VM’s CPU state needs to be context switched
from one host to another. This is a small amount of information to



transfer and represents a lower bound for minimizing the live
migration downtime.

Memory content: The VM’s memory state also needs to be
transferred to the destination host. This is a larger amount of
information than the CPU state. It includes the memory state of
both the guest OS and all running processes within the VM. The
VM may be configured with more memory than is currently in
active use. Hypervisors that can identify and avoid transferring the
contents of unused memory have the potential to substantially
reduce migration time. Compression and other techniques have
the ability to speed up transfer as well.

Storage content: Storage content is an optional part of live
migration. The on-disk VM image need not be transferred if it is
accessible to both the source and the destination machines through
Network Attached Storage (NAS). Transferring only the memory
contents is called memory migration. If the storage cannot be
accessed by the destination host, then a new storage virtual disk
needs to be registered on the destination host and the storage
content needs to be synchronized from the source to the
destination. This is called storage migration or sometimes shared-
nothing migration. Storage is by far the largest amount of
information to be transferred, and the time to transfer the full disk
image over the network can be substantial. As with memory,
hypervisors that can identify and avoid transferring the contents of
unused disk blocks have the potential to greatly reduce migration
time.

2.2 Characterization of Memory and Storage
Contents to Be Migrated

To help better understand memory migration and storage
migration, we present definitions for various categories of
memory content and storage content.

e VM Configured Memory

Configured Memory is the amount of memory that can be
given to the virtual machine by the hypervisor. To the VM
guest, this looks like the amount of “physical memory”
available for use.

e  Hypervisor Allocated Memory

Allocated Memory is the amount of physical memory on the
underlying hardware that the hypervisor has actually
allocated to a guest VM. This is less than the VM Configured
Memory and is reported from the perspective of the
hypervisor. Allocated Memory indicates the portion of VM
Configured Memory that the VM has actively used. If a VM
uses memory and then frees it, the allocated memory may or
may not be reduced from the perspective of the hypervisor.

e VM Used Memory

Used Memory is the memory currently and actively used by
VM’s OS and all running processes. These are memory
pages actively used by the VM’s OS and resident inside the
VM memory. It is reported from the perspective of the guest
VM.

®  Application Requested Memory

Requested Memory is the memory that applications running
inside VM have requested from the VM’s OS. The requested
memory is not guaranteed to be resident in memory because
memory not currently in use may be swapped out to the
VM’s disk when VM Configured Memory is all used.

e  Application Actively Dirtied Memory

Dirtied Memory is the memory that applications are actively
modifying via writing to in-memory pages. Dirtied Memory
is part of the Requested Memory of an application that is
actively being used thus it is typically resident in memory
rather than being swapped out to disk.

Normally, those memories sizes can be ordered as below: VM
Configured Memory > Hypervisor Allocated Memory > VM Used

Memory > Application Requested Memory > Application

Actively Dirtied Memory. Their relationship is illustrated in
Figure 1. If the VM’s swap disk is actively in use, then it is also
possible to see Application Requested Memory > VM Used
Memory because part of the requested memory pages go into
swap instead of being resident in memory.
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Figure 1 — Illustrating the categories of memory content

Practically in live migration, Hypervisor Allocated Memory is the
most accurate parameter to estimate the amount of memory data
to be transferred. Configured Memory serves as an upper bound,
but it is a less accurate guide when predicting migration time.
Dirtied Memory is also a key parameter. When memory is dirtied
after it is migrated, a new copy must be sent, increasing the total
amount of data to be transferred over the network.

We also break down the various categories of storage content to
be considered in migration:

e  Virtual Disk Size

Virtual Disk size is the size of the “physical” disk offered to
the VM for its use. Like VM Configured Memory, virtual
disk size is typically defined when the VM is created. To the
VM guest, this looks like the size of its “physical disk”. Most
hypervisors offer options to allocate all the space when
created, or to dynamically expand the actual storage space as
it is used.

e VM Used Blocks

Used Blocks size is the actual system and user data size
stored in VM image and used by VM’s OS. It is the size of
data actually contained in the VM’s file system. Typically,
the Virtual Disk will not be completely filled with data.

e  Hypervisor Allocated Blocks

Allocated Blocks is the space actually allocated by the
hypervisor for a VM’s storage content. If the hypervisor pre-
allocates the entire virtual disk size initially, then Allocated
Blocks will be same as the Virtual Disk size. If the



hypervisor allocates space as it is used, then the Allocated
Blocks may be the same size as the Used Blocks. However,
if a VM frees the blocks it is using, then the hypervisor may
not shrink the Allocated Blocks. The file system inside the
VM understands which disk blocks are used and which ones
are freed, but it is harder for the hypervisor to have this level
of visibility. Avoiding transferring unused or garbage-
collected blocks could substantially reduce storage migration
time in some case, but we are not aware of any hypervisor
that has implemented a disk space garbage collection
mechanism.

In general, the disk size follows the order: Virtual Disk Size >
Allocated Blocks > VM Used Blocks.

In the result and analysis section, we will match these definitions
of memory and storage contents to the data we have collected and
give further analysis and explanation.

3. DESIGN OF BENCHMARK

In this section, we describe the design of an automated testing
framework that measures important performance characteristics of
live migration, including total migration time, downtime or the
time a VM is unresponsive during migration, and the amount of
data transferred over the network during migration. Our testing
framework will allow cloud administrators to compare the pros
and cons of the live migration feature across different hypervisors,
and to gather key data to guide the migration decisions of both
system administrators and autonomic cloud systems.

Our primary goal is to provide datacenter administrators with
clear information about the factors that affect live migration, and
to point out common pitfalls of live migration such as migrations
that do not complete. Test results can also give hypervisor
developers an objective view of how to optimize their live
migration and provide insight into how their migration
implementation compares to those of other hypervisors.

3.1 Test Architecture for Live Migration

To make our testing more objective and fair to each different
virtualization, we set up a 3™-party benchmark server to evaluate
all virtualization platforms in a consistent manner. All the test
actions are taken either in a benchmark server or benchmark VM,
independent of the underlying hypervisors or host platforms.
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Figure 2 — Live migration test framework

The more detailed test framework is shown in Figure 2. Each of
the source and destination hosts was configured identically, with
two distinct physical network adapters, cabled through
independent identical switches.

There are two separate networks set up to isolate migration traffic
from VM web service traffic. The VM web service goes through
one network while the VM migrating data goes through a separate
one. A ping test is used to monitor the accessibility of services
within the migrating benchmark VM. All cloud management
traffic, including the actual migration traffic, goes through a
different network segment than the ping probes. The migration
command is sent from the benchmark server to the source host
over the network.

The benchmark can capture traces of the network traffic to and
from the VM as well as to and from the hypervisor, including the
migration traffic. Those captured packets with timestamps can be
further used to probe the exact behavior of live migration. We
have used this to build a live migration’s ping graph and probed
into what happens to the VM packets before and after the
migration downtime.

3.2 Workload Stress Test in VM

Since VM migration performance varies with the workload
running inside the migrating VM, our benchmark suite includes a
set of workload stress tests that run inside the migrating VM.
These tests allow us to probe into the relationship of VM activities
and live migration performance. The stress tests are classified by
the primary resource consumed in the test: CPU, memory access
(read and write), disk access (read and write), and network access
(send and receive from both TCP and UDP). While tuning the
stress test inside VM and evaluating live migration performance,
we would be able to observe the pattern of how exactly each
activity in VM will affect the VM migration.

The CPU Stress Test performs intensive mathematical
calculations (FFT), but uses a trivial amount of memory and disk
I/O. It can be configured to use different scheduling priorities
ranging from 1 (75% user CPU cycles) to 10 (100% system CPU
cycles).

The Memory Stress Test is programmed to allocate a specified
memory size and then dirty a specified portion of the total
allocated memory. We can control both the amount of memory
that is written or dirtied as well as the rate at which data is dirtied.

The Disk Write Stress Test is programmed to keep writing page
units sequentially into a file to a specified size, and then rewrite
new data from the beginning of the file.

The Disk Read Stress Test is programmed to first create a file with
specified data, and then keep reading data sequentially by page
unit from file into memory sequentially, and then iteratively read
from the beginning of the file again.

The TCP Send/Receive Stress Test is programmed to intensively
send sequence data through an established TCP connection. The
client will wait to receive and examine the sequence numbers. If
the TCP connection is broken due to the migration, the TCP
connection will be reestablished and reset the sequence number.
The TCP connection will consume the VM’s Internet bandwidth,
but won’t affect the migration network bandwidth.
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Figure 3 — VMware downtime ping pattern

The UDP Send/Receive Stress Test is programmed to intensively
send sequence data through UDP protocol with no guarantee of it
being received. The client will receive and examine the sequence
numbers. If some of the UDP packets are lost, the UDP client will
receive the discontinued sequence numbers and record them to a
file with their timestamps.

3.3 Profiling Live Migration

We collected three primary statistics on each migration,
specifically how long it takes to complete the migration from start
to finish (total migration time), how much time the VM in
unresponsive during migration (VM downtime), and how much
data is transferred over the network.

Total time is relatively simple to measure. We simply initiate each
migration using a command line utility and note the time before
and after the migration command completes.

Measuring VM downtime is more complicated. We ping the VM
during migration, controlling the interval of the pings to pinpoint
the downtime experienced during migration. The ping interval is
specifically configured to be at millisecond level, much smaller
than for normal ping. As expected, a contiguous block of ping
probes will receive no response from the migrating VM. We note
the timestamp and sequence number of ping requests that receive
no response in order to compute the VM downtime. From our test
framework, we can build the ping sequence diagram. The ping
pattern during VMware memory migration is shown in Figure 3 as
one example. We see that some ping packets are received at the
source but the corresponding responses are sent from the
destination (e.g. sequence numbers 33-44). The detailed pattern of
which ping requests are responded to at the source, which are
responded to at the destination, and which receive no response at
all, is quite interesting and subtle. For example, we see evidence
that even after the VM stops responding to ping requests on the
source, it is still receiving and buffering them for later responses
on the destination. The responses to these pings are delayed
substantially and tend to be issued in a cluster at the destination.
We measure the total data transferred using counters on the
managed switch between the source and destination machines; our
benchmarking scripts capture the send and receive counts on the
switch before and after migration through SNMP protocol. We
also see that all the hypervisors use an ARP packet to notify and
redirect the packets to the new host. Note that we isolate the
migration traffic by sending it over a different network path than
any management or measurement traffic.

3.4 Benchmark Toolkit

A shell script is used to initiate the workload in the VM, to collect
statistics to profile VM before, during and after the migration, to
start the migration and finally to cleanup/reset the system. The
pseudo code for measuring VM migration time and other data is
displayed in Table 1.

We run each migration twice — once without ping measurements
and once with ping measurements so that we can account for any
difference in results as a result of the additional VM activity due
to ping response. The ping script will set the ping interval of 1 ms,
dropping the ping test inside the VM before live migration starts,
and then the ping responses are recorded into a file. Once
migration is done, we analyze the ping responses and pick out the
lost sequence numbers and then calculate the downtime by the lost
sequence timestamps. So for evaluating migration downtime, line
(2) is replaced with ping scripts, including the migration
commands. For each virtualization, the code line (1) (2) (3) will
be replaced with the corresponding hypervisor command interface
as shown in Table 2.

Table 1. Pseudo code for live migration evaluation

Power On VM from Hypervisor (D)
Start workload in VM
Record VM CPU, Memory, Disk stats
Record Start Time
Record Initial network switch registers
Start to migrate VM 2)
Record End Time
Record Final network switch registers
Calculate live migration stats
Migrate VM back 3)
Power Off VM

Table 2. Virtualization live migration command API

Virtualization | Command Interface
KVM ssh + virsh

VMware Java web service SDK
Hyper-V telnet + powershell
XenServer ssh + xe




4. RESULTS

In this section, we present results from testing live migration in
Redhat KVM 3.2, Citrix XenServer 6.1, VMware vSphere 5.1,
and Microsoft Hyper-V 2012. !

4.1 Testbed Specifications

In our experiment, VMs are migrated between two enterprise
servers as described in Table 3. The full test environment consists
of two servers, one network attached storage, and a managed
switch.

Table 3. Server specification

PC Model HP DL165 G7

CPU 2x AMD Opteron 6220 8 core 3.0GHz
Memory 64GB DDR3 1600MHz

NIC 1 Gb/s

The NAS is Iomega px4-300r 7200 rpm with 12 TB storage
configured in a RAID mirror with capacity of 6 TB. It is used as a
shared NFS server to host the VM images. The managed switch is
a 1 Gb/s Netgear ProSafe 108T.

We use a separate benchmark server for starting the live
migrations and collecting the data. The benchmark server is an
IBM xSeries 2X Intel Xeon 3.2 GHZ machine with 2 GB of
memory and 1 Gb/s NIC. We run Ubuntu 12.04 server on this
benchmark server.

The VM to be migrated has 1 vCPU, 2 GB of memory, 40 GB of
storage and 1 virtual network interface in bridge mode. We run
Ubuntu 12.04 64 bit in the migrating VM.

Table 4. VM image specification

e |8fs |9fa|uiy
ECS|Ec8 |CE8|EL ¢
SHE [ S2E (Sas | SoE

=g =g 7 g 7 g
KVM NFS | QCOW2 | EXT4 | QCOW2
VMware NFS VMDK VMEFS VMDK
Hyper-V | iSCSI | VHD | NTFS | VHD
XenServer NFS VHD EXT3 LVM

The format of VM image varies from hypervisor to hypervisor.
Each virtualization supports its own image format. In our tests, we

! For memory migration, both Hyper-V and VMware require the
source and destination hosts to be in the same virtual cluster.
Hyper-V also requires that VM images be hosted on Samba 3.0 or
iSCSI media, but those limitations are removed for storage
migration.

For storage migration, KVM and Hyper-V handle the complete
migration in one step while VMware and Citrix can handle the
migration in two separate steps: disk migration and memory
migration. This allows VMware and Citrix to keep the VM
running on the same host, but migrate the VM’s disk storage to a
new place, separating disk migration from memory migration.

use the format that each virtualization favors as described in Table
4.

For memory migration, the VM images are generally hosted on an
NFS share exported by the NAS. In the case of Hyper-V, we also
collected results with the NAS exporting the VM image over
iSCSI. We did this because Hyper-V does not officially support
NES.

For storage migration, the VM image is stored on a disk local to
each server. For each Hypervisor, the file system format for the
local disk varies. KVM is EXT4, VMware is VMFS, Hyper-V is
NTFS, XenServer is an LVM volume. In each case, we used the
format preferred by the hypervisor under test.

4.2 Results and Analysis

In this section, we present results from using our full test suite
with a wide variety of parameters.

4.2.1 Live migration baseline

First, we present some baseline measurements for memory
migration across the four hypervisors. For each virtualization, we
ran one VM on a host as specified above, with no stress tests
running inside, then collected the data while migrating it to the
destination.
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Figure 4 — Memory migration baseline

Figure 4 portrays the total live migration time broken down into
downtime and migration time. Downtime represents the time that
the VM being migrated was unresponsive to ping requests. Table
5 shows more detailed results for this baseline.

Table 5. Memory migration baseline

%)

£ g, e - €. -
o = o) s m BEE m

2 s 5= s
KVM 0.18 12.45 124 247
VMware 0.59 6.71 234 354
Hyper-V 0.72 23.71 135 2266
XenServer 4.64 29.17 85 2255

From these results, we see that VMware has the lowest total
migration time, while KVM has the lowest downtime. XenServer
has the worst total time as well as the worst downtime. It is the
only virtualization system showing downtime of more than 1
second. XenServer’s downtime also matches with other



researcher’s result [10]. Comparing the migration data with
migration time, their estimate transfer speeds are 20 MB/s (KVM),
41 MB/s (VMware), 96 MB/s (Hyper-V), and 62 MB/s
(XenServer), which indicates that Hyper-V has the best network
throughput while still maintaining similar downtime as VMware.
KVM successfully syncs the dirty memory data to achieve the
minimal downtime. Notice that VM used memory varies between
hypervisors even when the same version of Ubuntu is installed.

For cloud administrators, the commercial advertisements of only
milliseconds of downtime are not always true. When we migrate
VMs, we still need to evaluate how sensitive the workload is to
downtime. A downtime of 4 seconds could easily cause service
interruptions for some workloads.

Referring back to the categories of memory content that we
defined in Section 2.2, KVM and VMware take less migration
time because they transfer only Allocated Memory rather than
Configured memory, while Hyper-V and XenServer migrate the
whole Configured Memory even though they use the least
memory.

The take-away for virtualization developers is that live migration
only needs to migrate the in-used memory which will save a lot of
migrating time, but the hypervisor has to abstract a VM’s free
memory information from the VM memory. An agent inside VM
can be used to aid hypervisors in this [15].

4.2.2 Memory migration vs. Storage migration

In this section, we added measurements of storage migration in
Figure 5 to the memory migration baselines in the previous
section. Not surprisingly, the total migration time increases
dramatically, but it is interesting to note that the downtime does
not increase substantially relative to memory migration. A few
simple back-of-the-envelope calculations on the size of the virtual
disk and the network bandwidth can be used to illustrate the point.
Transferring a 40 GB virtual disk over a 1 Gb/s network will take
at least 8 minutes, while transferring a 1 TB virtual disk over a 1
Mb/s link could take over 2 weeks! Storage migration in a
production environment could take longer as it experiences more
contention for available network resources. Similarly, the longer
migration takes, the more blocks will be rewritten during the time
it takes to transfer other blocks and thus need to be retransmitted.
Migrating cold storage blocks first, rather than transferring blocks
in physical order could be a good strategy for minimizing this
effect.

For cloud administrators, it can be tempting to offer storage
migration to customers with large disk space, but it is important to
recognize how time-consuming storage migration can be. One
best practice is to allocate a small system disk for VM and mount
large user data from shared storage.
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Figure 5 — Memory migration vs. storage migration on
different virtualizations

The take-away for virtualization developers is that most storage
migration time is spent moving static storage data to the disk.
Since backups or snapshot VM images are a common routine for
most administrators, it will save a dramatic amount of time if
virtualization can support delta-migration where the remote host
already has a snapshot image or recent “stale” image, so that the
hypervisor only need to migrate the delta or new data, and then
merge that with the snapshot to bring it up-to-date.

Notice also that KVM has dramatically higher total migration
time. Regardless of how full the virtual disk is with valid data,
KVM will transfer the entire Virtual Disk, rather than only the
Used Blocks or Allocated Blocks. This would be an important
optimization for KVM. It can save cloud administrators gigabytes
of data and hours of time over the network.

4.2.3 How VM Stress activity impacts live migration
In this section, we consider the impact of an activity running
inside the VM during migration. If the VM is running with a lot
of activities going on inside, how badly will it prolong the
migration? How much will the migration impact the services
inside?

We used our benchmark to run a series of stress tests in VM and
evaluated the live migration performance. We determined each
resource’s impact and showed how live migration varies.

The CPU’s activity’s impact is trivial. Our result shows that no
matter how intensive the CPU workload is in the VM, when the
CPU state is suspended and migrates, the migration time and
downtime are almost the same. Live migration is believed to be
independent of CPU workloads.

Not surprisingly, memory writes impact memory migration time
substantially while memory reads do not. For memory writes,
both the total amount of memory written (dirty memory size) and
the rate with which memory is written matter.

Disk writes have limited impact on memory migration. But
somewhat surprisingly, disk reads affect memory migration
substantially because a disk read typically translates into a
memory write as the data read from disk is cached in memory.
Disk writes don’t have the same impact on memory migration, but
of course, disk writes affect storage migration while disk reads do
not.

Memory content synchronization is the most critical part. Here we
use our benchmark to vary the dirty memory size inside the
migrating VM to further our exploration in live migration.

We dirty each memory page at the most intensive rate, and then
gradually increase the dirty memory size exponentially up to the
configured memory size. As the dirty memory size goes up, the
migration time, migration data, and downtime responds as below
in Figure 6, 7, and 8.

4.2.3.1 Dirty Memory size vs. Memory migration

As the dirty size increases, the used memory and dirty data
required to be synced increase. So for virtualizations, this is a
general principle for the live migration: the dirty memory size
increases, the migration time and data also increase as shown in
Figures 6 and 7.
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Surprisingly, KVM is unable to finish when the dirty memory size
increases beyond 32 MB at least with default migration settings.
Recall from our baseline measurements, that KVM achieved the
lowest downtime. KVM sacrifices the migration network
throughput and migration time to maintain this low downtime. As
the dirty memory size increases, KVM finally cannot keep pace
with synchronizing the large dirty memory at high speed and thus
fails to complete the migration. It also fails to detect that no
progress is being made and change its strategy.

For cloud administrators, it is better to be aware of this situation
and add a timeout option to the VM migration for safety. If a
migration does not finish in a fixed time, it would be better to
timeout and initiate a cold migration of the VM state than to
continue attempting live migration unsuccessfully [11].

For all systems, there is a tradeoff between minimizing total
migration time and downtime. Syncing the dirty pages fast
minimizes the downtime, but will generate more migration data
and prolong the migration time, while syncing lazily causes more
dirty memory pages to be migrated during the migration
downtime and will introduce more downtime. An optional
approach may be for the hypervisor to slow down the VM dirty
speed while migrating the VM [12].

Another interesting result is seen as the dirty size becomes the
same as the configured memory size and swap the space is used to
load excessive memory pages onto virtual disk. For XenServer
and Hyper-V, the migration time and data drop dramatically,
instead of continuing to increase, opposite of the VMware pattern.
Swap does not impact VMware but does help Hyper-V and
XenServer to reduce the dirty memory impact. One hypothesis is
that so many pages have been dirtied in a short amount of time
that even recently dirtied pages fall out of the least recently used
heuristics and are therefore swapped out to disk. This saves the
sync time for the memory since those dirty memory pages are on
the disk and thus shared rather than being transferred during
memory migration.

Migration Downtime(seconds)

Dirty Memory Size(MB)

Figure 8 — Memory migration downtime comparison

VMware’s default setting is hosting the VM swap with the local
host, separate from VM images. So the swap also needs to be
synchronized to the destination. VMware does offer an option to
place the swap within the VM folder, which can facilitate the
migration, but it is not set as a default.

In Figure 8, we again see that KVM fails to complete migration
above 32 MB of Dirty Memory Size. Hyper-V’s downtime
increases, but only slightly from 0.72s to 0.96s. VMware’s
downtime can be considered as independent from dirty memory
size variations, remaining at a constant 0.61s if we don’t take into
account the downtime spike introduced around 256 MB/s dirty
memory size. This spike is yet unknown to us without the insight
of a VMware migration algorithm, but it is reliably and
consistently reproduced in our testbed. The dirty memory size
becomes a large factor in XenServer’s downtime (isolated in its
own figure so the comparison of the other 3 is more clear). The
downtime for XenServer goes up to over 15 seconds, which is not
acceptable for most web service applications.

4.2.3.2 Dirty memory size vs. Storage migration
Applying the same tests to storage migration in the same testbed,
we see the difference between memory migration and storage
migration under the parameter of dirty memory size in Figure 9,
10, and 11.
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Figure 9 — Storage migration time comparison
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Figure 10 — Storage migration total transferred data
comparison

KVM'’s storage migration is still unsuccessful when the dirty rate
is above 32 MB/s dirty memory size, the same as memory
migration. It is natural to conclude that KVM storage migration is
impacted by the same memory content synchronization failure.
We removed the KVM data in the figures below to provide a
better visual comparison of the other virtualization systems.

In general, the trend of storage migration time and data follows
the same pattern of memory migration as the dirty memory size
changes, but takes more time and data to transfer storage content
since little disk I/O is involved. The line level is differentiable due
to a difference in VM base image size. VMware’s VM size is 2.2
GB, while Hyper-V’s is 3.5 GB, and XenServer’s is 1.2 GB.

Different behavior happens when swap space is being accessed
and the dirty memory size equals the configured memory size. As
we hypothesized, the drop in memory migration is due to disk I/O.
In XenServer’s storage migration, those dirtied and swapped to
the disk also need to be synced, so the storage migration time and
data increase. We hypothesized that XenServer’s storage sync is
in asynchronous mode while Hyper-V syncs disk /O
simultaneously to the source and destination hosts.

One take-away message for virtualization developers is that if a
hypervisor can have access to the destination’s local storage
remotely at the same time, then storage migration will be more
flexible in handling the dirty synchronization issue since storage
requests can tolerate longer latency than memory requests.

The downtime that storage migration introduces is somewhat
different than for memory migration as shown in Table 6.

Table 6. Downtime baseline for memory vs. storage migration

Memory Downtime | Storage Downtime
(sec) (sec)

KVM 0.18 0.21
VMware 0.59 241
Hyper-V 0.72 1.56

XenServer 4.64 2.56

For VMware and Hyper-V, VM’s storage switch during storage
migration does introduce a lot more downtime. KVM retains its
low downtime; XenServer has less downtime in storage migration
than memory migration. We suspect that XenServer’s storage
migration uses a slightly different algorithm from its memory
migration.

Furthermore, when we vary the dirty memory size, we can see the
storage migration downtime pattern in the figure below. In
general, the memory migration and storage migration downtime
patterns affected by dirty memory follow a similar pattern.
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Figure 11 — Storage migration downtime comparison

Obviously, dirty memory size is a big factor that dramatically
impacts XenServer migration downtime. However, swap content
syncing won’t impact the downtime that much, since downtime
still drops when swap is in use.

Although Hyper-V’s downtime during memory migration is
gradually increasing, storage migration downtime is independent
of dirty memory size.

The downtime spike still exists in VMware storage migration.
Additionally, VMware storage migration introduces two phases of
downtime: the first is 0.11s and the second is around 2.3s. This
hasn’t been observed in other hypervisors. Moreover, contrary to
XenServer, disk /O introduces more downtime to storage
migration as swap space is used by the VM.

Through the migration statistics we collected, we have found each
virtualization has the pros and cons. There are also a lot of
optimizing points that could be discovered by using our
benchmark tool. In general, for live migration implementation, the
more information a hypervisor can obtain from the VM’s OS
during live migration, the more efficient and faster the hypervisors
can accomplish live migration, such as how many memory pages
are in use, or how many disk blocks are allocated with user data.

4.2.4 Live migration vs. Cold migration

Finally, we compared live migration to cold migration. In cold
migration, the VM is shut down and its files transferred from
source to destination. For cold migration, downtime is the same as
total migration time.

We created a KVM VM image as Section 4.1 specified, the VM
virtual disk size is capped as 40 GB (Configured when created),
but only used 1.8 GB of space (df command inside VM). The
image file size shows as 41 GB (/s command in Hypervisor).
After we compressed the image with gzip, the compressed size
turned out to be 570 MB. As cold migration, we used scp to copy
the image over to the destination host. As storage live migration,
we migrated the running VM with VM image to the destination.
The actual measured network bandwidth for migration is 97
Mbps.

In Figure 12, one can see that live storage migration takes the
longest transfer time and trivial downtime. To transfer the cold
VM image itself it will take a fair amount of time, which is
indicated by cold migration. The compression bar tells us that the
high compression rate of gzip can greatly reduce the transfer time,
but the time for compression/decompression must be added to the
downtime time as well. The savings from transfer time can be
completely eaten up by the compression and decompression
overhead. Of course this depends on the network bandwidth
available. Novel compression schemes could also be explored that
are customized for the live migration scenario [13].

Although live migration takes the longest transfer time, the
downtime is trivial, and the transfer time is still affordable
compared to cold migration. It leads the Cloud administrators to



realize that they need to care about live migration’s performance
and understand how to best utilize the feature in cloud
management.
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Figure 12 — Live migration vs. cold migration

5. LESSONS LEARNED

We have the live migration benchmark tools automated and it can
be easily ported to test any kind of enterprise-level virtualization
system and automatically finish all the stress tests. In the process
of building our tools, we learned several other interesting lessons.

For example, we found that ping in Ubuntu has a new feature of
ping at a high speed up to 1ms, which can better evaluate the
downtime. But not all the Linux-based systems support this
feature, not to mention Windows Hyper-V. That brings us to our
plan that our benchmark tool should be independent of
virtualization systems, and we developed a 3™-party benchmark
server that is responsible for all the tests. This leads to another
problem of how to remotely manage the VMs. We use various
remote APIs provided by different hypervisors.

Initially we hoped to tune all of our network parameters using the
powerful network simulator, CORE [14]. CORE simulates
network topology, variations in network speed, and outage
situations. However, it turned out that software simulation cannot
reach the optimal network performance and it may also drop the
packets. We also attempted to use software to record the packets
to network traffic, but all failed due to the fact that collecting
network traffic is resource consuming. To solve this problem, we
were required to use hardware support to record network traffic.
We used a Netgear managed switch to count the data packets
accurately and efficiently and can optionally augment these
statistics with packet captures to help drill down into the details.
For example, we can determine what happens to each ping packet
during the migration process.

6. RELATED WORK

The closest related work is the Virt-LM [4] benchmark from
Zhejiang University. It measures many of the same metrics
including total time, downtime and includes the ability to sample
the migration rate at various points during the migration. In
contrast to their work, which utilizes the SPEC simulated
workloads, our work uses microbenchmarks run in the VM to
precisely control the workload parameters such as the amount of
memory allocated, read and written, and the amount of disk space
allocated, read and written. Furthermore, we specifically applied
our benchmarks to studying both memory migration and storage

migration. We also studied KVM, XenServer, VMware, and
Hyper-V where their study examined only KVM and Xen. We
found that including a Windows based hypervisor, Hyper-V, was
essential to making our benchmark truly hypervisor agnostic.

Vmmark [5] benchmark is dedicated to the VMware platform
with coarse metrics while our benchmark is compatible with
diverse virtualization platforms and fine-granularity metrics of
live migration performance. Other papers either focus on the
migration cost model [6], simulating the real web service
workload and evaluating by SLA criteria or math modeling [7], or
dividing the migration time into separate phases and then
formalize with mathematical models. We focus on the impact on
live migration by the VM internal services, and the results could
help further refine their migration model. Some studies are
targeting the energy efficiency [8] of live migrations. Our testing
approach from the angle of VM activities is similar to [9], but
they are focusing more on correlating the migration time with the
hypervisor’s CPU activities, while our benchmark correlates VM
internal resource activities with live migration performance.
Additionally our benchmark provides finer-granularity tuning
parameters to those resource activities. There have been numerous
migration evaluations published as either whitepapers from
virtualization vendors or community blog posts [1] [2] [3].
However, none of these have provided a thorough and consistent
comparison across virtualization platforms.

There is also a rich set of research into optimizing live migration
performance. Some customize specific virtualization systems to
prototype their ideas [15, 16] or validate their ideas on multiple
platforms [17]. They all use migration time, total migration data,
and migration downtime to validate their enhancement. Our live
migration benchmark could be applied to help quantify the impact
of their changes on live migration performance and give an
apples-to-apples comparison among all those optimizations.

7. SUMMARY

Live migration is an important feature in cloud management. Our
live migration benchmark has helped us to examine contemporary
enterprise-level virtualization and their live migration features. By
quantifying the live migration characteristics, we have been able
to find the gaps between ideal performance and actual
performance under a wide variety of conditions. This can help
cloud administrators more accurately predict live migration
performance and understand better how to utilize live migration in
their cloud management strategy. By comparing across different
hypervisors, we also find there are some optimization spaces for
virtualization developers to improve live migration performance.
Our VM live migration benchmark is licensed under GPL3.0 and
can be accessed through the link
http://www.clarkson.edu/projects/gdc/vmmigration.
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