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ABSTRACT 
When a personal computer is attacked, both personal data 
like digital photos and system configuration information 
like installed programs can be lost. To protect personal 
data, we house it in a file server virtual machine running 
on the same physical host and export it to other virtual 
machines running on the same host. We implement this 
private file server virtual machine using a modified 
version of an NFS server installed in a virtual machine 
under various virtualization environments such as Xen 
and VMware. We also demonstrate that by placing the 
user’s applications in a virtual machine rather than 
directly on the base machine we can provide near instant 
recovery of system configuration information.  We 
quantify the costs of this architecture by comparing 
benchmarks running directly on a base operating system 
and accessing data in a local filesystem to those running 
in a guest operating system and accessing data in an NFS 
partition mounted from a file server virtual machine. We 
find that for Xen the overhead of read intensive 
workloads is at most 5% and for write intensive 
workloads the overhead is at most 24%. For system 
benchmarks that stress CPU and memory performance, 
we see no noticeable degradation.  
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1.  Introduction 
 

Worms and viruses have entered the consciousness of 
the majority of personal computer users. Even novice 
users are aware of the attacks that can come in the form of 
email from a friend or a pop-up ad from a web site. Fully 
restoring a compromised system is a painful process often 
involving reinstalling the operating system and user 
applications. This can take hours or days even for trained 
professionals with all the proper materials readily on 
hand. For average users, even assembling the installation 
materials (e.g. CDs, manuals, configuration settings, etc.) 
may be an overwhelming task, not to mention correctly 
installing and configuring each piece of software.  

To make matters worse, the process of restoring a 
compromised system to a usable state can frequently 
result in the loss of any personal data stored on the 
system. From the user’s perspective, this is often the 
worst outcome of an attack. System data may be painful 
to restore, but it can be restored from public sources. 
Personal data, however, can be restored only from private 
backups and the vast majority of personal computer users 
do not routinely backup their data. Once lost, personal 
data can only be recovered through repeated effort (e.g. 
rewriting a report) and in some cases can never be 
recovered (e.g. digital photos of a one time event). 

We propose the use of a specialized virtual private 
file server to provide added protection for personal data 
and virtual machine appliances to provide rapid 
restoration of a functional copy of system data.  Personal 
data is housed in the virtual private file server and 
exported to the virtual machine appliances through 
specialized mount points with a richer set of permissions 
than the traditional read/write options.  

This architecture provides a number of benefits 
including 1) the opportunity to separate personal data into 
multiple classes to which different finer grained 
permissions can be applied, 2) the separation of personal 
data from system data allowing each to be backed-up and 
restored appropriately, 3) the ability to rapidly install or 
restore virtual machines containing fully configured 
applications and services, and 4) rapid recovery from 
attack by rolling back system data to a known-good state 
without losing recent changes to personal data. 

In Section 2, we describe our architecture and its 
benefits in detail. In Section 3, we compare our 
architecture to making regular backups and other 
strategies for providing protection of user data and 
recovery from attack. In Section 4, we describe how it can 
be used to protect against 21 of 22 specific attacks 
described in the US-CERT Current Activity Reports and 
Symantec Security Response. In Section 5, we quantify 
the overhead associated with this architecture by running 
a variety of benchmarks on a prototype implemented 
using a modified version of NFS in conjunction with 
virtual machines in both Xen and VMware. With Xen, we 



find no degradation for CPU and memory intensive 
workloads and 5-24% degradation for I/O intensive 
workloads. With VMware, we also find no degradation 
for CPU and memory intensive workloads and 25-41% 
degradation on I/O intensive workloads. However, 
VMware supports Windows guests which are key to 
demonstrating rapid recovery from attack.  We discuss 
related work in Section 6 and conclusions in Section 7. 
 

2. Architecture 
 
Figure 1 illustrates the main components of our 
architecture. A single physical host is home to multiple 
virtual machines. First, there is the base machine (labeled 
with a 1 in the diagram). This base machine contains a 
virtualization environment that can be implemented as a 
base operating system running a virtual machine system 
such as VMware or as a virtual machine monitor such as 
Xen. Second, there is a virtual network (labeled with a 2 
in the diagram) that is accessible only to this base 
machine and any virtual machine running on this host. 
Third, there is a file system virtual machine (labeled with 
a 3 in the diagram) that has only one network interface on 
the local virtual network. This file system virtual machine 
is the permanent home for personal data and exports 
subsets of this personal data store via specialized mount 
points to local clients. Fourth, there are virtual machine 

appliances (labeled with a 4 in the diagram). These virtual 
machines house system data such as an operating system 
and user applications. They can also house locally created 
personal data temporarily.    
Virtual machine appliances can have two network 
interfaces – one on the physical network bridged through 
the base machine and one on the local virtual network.  
Depending on its function, a virtual machine appliance 
may not need one or both of these network interfaces. For 
example, you may choose to browse the web in a virtual 
machine appliance with a connection to the physical 
network, but with no interface on the local virtual network 
to prevent an attack from even reaching the file server 
virtual machine. Similarly, you might choose to configure 
a virtual machine with only access to the local virtual 
network if it has no need to reach the outside world. 
 
2.1 Hardened Base Machine 
We have implemented two prototypes of this architecture 
using  Xen and VMware as the virtual machine monitors. 
In both implementations, the base machine is used to 
create the local virtual network, the file system virtual 
machine and the virtual machine appliances.  It is used to 
assign resources to each of these guests. It can also be 
used to save or restore checkpoints of virtual machine 
appliance images. 
We also use the base machine as a platform for 
monitoring the behaviour of each guest. For example, in 

Figure 1: System 



our prototype, we run an intrusion detection system on the 
base machine. (The base machine could also be used as a 
firewall or NAT gateway to further control access to 
virtual machine appliances with interfaces on the physical 
network.) The intrusion detection system can detect both 
attack signatures in incoming traffic and unexpected 
behaviour in outgoing traffic.  
The security of the base machine is key to the security of 
the rest of the system. Therefore, in our prototype, we 
“hardened” the base machine by strictly limiting the types 
of applications running on the base machine. In particular, 
we ran no server applications so there were no open 
network ports on the base machine. Alternatively, it 
would be possible to open a limited number of ports for 
remote administration, but since each open port is a 
potential entry point for attack, it is important to carefully 
secure each open port.  We also installed no client 
software such as web browser and email clients that are 
common entry points for attack. All normal user activity 
takes place in the virtual machine appliances. A machine 
with no open ports and few applications running is 
significantly harder to attack than a general purpose 
machine with many open ports and user applications that 
are interacting with the outside world. 
 
2.1 File System Virtual Machine 
 
2.2.1 Hardening the File System Virtual Machine 
We implemented the file system virtual machine using a 
modified version of Sun’s Network File System (NFS) 
version 3 running in a Linux guest virtual machine.  Much 
like the base machine, the file system virtual machine is 
hardened against attack by stripping away any 
unnecessary applications and closing all unnecessary 
network ports. All the software in the file system virtual 
machine is focused on exporting personal data to local 
clients and on facilitating maintenance on that data such 
as backup. 

The file system virtual machine is additionally 
protected by only being reachable over the local virtual 
network. Attacks cannot target the file system virtual 
machine directly. They could only reach the file system 
virtual machine by first compromising a virtual machine 
appliance. This would involve two successful exploits – 
one against an application running in a virtual machine 
appliance and one running against the NFS server running 
on the file server virtual machine. 
 
2.2.2 Fine-Grain Mount Points  
 Personal data is housed in the file system virtual machine 
and subsets of it are exported to virtual machine 
appliances. This allows you to restrict both the subset of 
data a virtual machine can access as well its access rights 
to that data.. For example, if you have a virtual machine 
appliance running a web server, you limit it to read-only 
access to a directory containing the data you want to make 
available on the web.  
 You can export portions of your user data store 
with different permissions in different virtual machine 

appliances. For example, you may mount a picture 
collection as read only in the virtual machine you use for 
most tasks and then only mount it writeable in a virtual 
machine used for importing and editing images. This 
would prevent your collection of digital photos from 
being deleted by malware that compromises your normal 
working environment. Similarly, you may choose to make 
your financial data accessible within a virtual machine 
running only Quicken or you may choose to make old, 
rarely changing data read-only except temporarily in the 
rare instance that you actually do want to change it. 
 
2.2.2 Richer Mount Point Permissions 
We also implemented a richer set of mount point 
permissions that allow “write-rarely” or “read-some” 
semantics. Specifically, we modified the NFS server to 
add read and write rate-limiting capability to each mount 
point in addition to full read or write privileges.  Using 
our modifications, one can specify the amount of data that 
can be read or written per unit of time. For example, a 
mount point could be classified as reading at most 1% of 
the data under the mount point in 1 hour. Such a rule 
could prevent malicious code from rapidly scanning the 
user’s complete data store.  

These read and write limits are just one example 
of a richer set of mount point permissions that can be used 
to help protect against attack.  Append-only permissions 
(i.e. the ability to add new files but not modify or delete 
existing files) could be used to prevent removal or 
corruption of existing data. (SELinux has support for 
append-only file systems of this type [1]. )  For example, a 
directory containing photos could be mounted append-
only in one virtual machine appliance allowing it to add 
photos, but not to delete existing photos. Another example 
would be restricting the size or file extension of files that 
are created (e.g. no “.exe” files).  

 
2.3. Virtual Machine Appliances 
 
2.3.1 Configuration of Virtual Machine Appliances 
Virtual machine appliances house system state much like 
the virtual private file server houses personal data. Each 
virtual machine appliance contains a base OS and any 
number of user level applications from desktop 
productivity applications to server software.  They can 
have network interfaces on the physical network allowing 
communication with the outside world. They can also 
have network interfaces on the local virtual network over 
which they can mount subsets of personal data from the 
file server virtual machine. 

There can be multiple mount points from the file 
system virtual machine into a client. Each mount point 
can have different permissions to allow finer grain control 
over the allowable access patterns. For example, in a 
single virtual machine, you might mount your mp3 
collection read-only, but your documents folder read-
write. Or you might map your email inbox directly in 
local storage in a virtual machine, but then move only that 



email you want to save onto a read-write volume exported 
from the personal file server.  

While the base machine and file system virtual 
machine are hardened against attack, virtual machine 
appliances will, in general, continue to run an 
unpredictable mix of user applications including some 
high-risk applications. As a result, they may be 
susceptible to attack through an open network port 
running a vulnerable service or through a user-initiated 
download such as email or web content.  
 
2.3.2 Checkpoint and Restart of Virtual Machines  
In our prototype, we save known-good checkpoints of 
each virtual machine appliance.  One important use of a 
known-good checkpoint is restoring a compromised 
virtual machine appliance from a trusted snapshot.  Any 
changes made within the virtual machine appliance since 
the checkpoint would be lost, but changes to personal data 
mounted from the file server machine would be 
preserved.  In this way, personal data does not become an 
automatic casualty of the process of restoring a 
compromised system. The checkpoint image would 
provide an immediately functional computing platform 
with access to the user’s data store from the file system 
virtual machine. 

Compromised virtual machine appliances can 
often be automatically detected by the intrusion detection 
system running on the base machine. In our prototype, 
when the intrusion detection system detects an attack, we 
stop and checkpoint the compromised virtual machine, 
restart a known-good checkpoint of the same machine and 
notify the user of these actions.  This process is nearly 
instantaneous – requiring only sufficient time to move the 
failed system image to a well-known location and move a 
copy of a trusted snapshot into place. It is worth noting 
that users can also trigger the restoration process 
manually if they suspect a compromise.   

To facilitate automated attack detection and 
recovery of the virtual machine appliance, we use a 
combination of snort rules, log watchers and configurable 
shell scripts.  Snort is an intrusion detection system that 
works by monitoring incoming and outgoing network 
traffic and can log (via Snort's Barnyard extension [2]) 
malicious network activity.  A very simple real time log 
monitoring utility called Logsurfer [3] is then used to 
execute pre-defined actions when it detects that a snort 
rule was triggered.  Specifically, Logsurfer is configured 
to run a set of parameterized shell scripts that manipulate 
the virtual machine appliances (shutdown, checkpoint, 
and restart or reconfigure such that their network access is 
immediately revoked).  We choose what action to take 
based on which virtual machine caused the fault and the 
severity of the Snort rule that caused the action. 

The system once restarted would still have the 
same vulnerability that was originally attacked.  To 
prevent future attacks, the trusted image should also be 
updated to patch the exploited vulnerability. The 
corrupted image can be saved or shipped to a system 
administrator for analysis and even possible recovery of 

data stored inside.  Analysis of the corrupted image and/or 
secure logs collected by the virtual machine monitor [4] 
could provide clues to what needs to be modified.  During 
this analysis and recovery process, the user would still 
have a functional computing platform with access to the 
majority of their data. This is a significant improvement 
over the extended down time that is often required when 
restoring a compromised system today.  

We also limit the number of automatic restarts. 
For example, after three restarts of a given image, any 
further compromise will result in stopping the virtual 
machine and checkpointing, but not in restarting the 
“trusted” snapshot.  

Users can also use the restoration process to 
rollback a virtual machine appliance for any other reason 
(e.g. they installed a piece of software and simply don’t 
want to keep it in the system). Similarly, the restoration 
process can be used to recover from accidental system 
corruption, e.g. from a routine patch or upgrade that 
introduced instability into the system. Many users do not 
regularly apply patches and system upgrades because of 
the risk of instability. Stable checkpoints would 
encourage users to be compliant with upgrade requests by 
allowing them to easily experiment with the upgraded 
image. Reducing the risk of regular upgrades and patches 
is another subtle way in which virtual machine appliances 
enhance system security. 
 
2.3.3 Application Mix in a Virtual Machine Appliance  
The number and type of applications in each virtual 
machine appliance can be tailored to the usage 
requirements and desired level of security. At one end of 
the spectrum, there could be only one virtual machine 
appliance containing all the software normally installed 
on a user’s base machine. However, there could also be 
many virtual machine appliances each with a subset of the 
user’s software.  

Multiple virtual machine appliances allow finer 
grained control over resources required, expected 
behaviour and the subset of personal data accessed.  For 
example, a web server virtual machine appliance may be 
given read only access to the content it is serving and may 
be prevented from establishing outgoing network 
connections. Thus even if the web server is attacked, the 
damage done to the user’s system is minimized. The 
attacker would also be prevented from harvesting 
information from the rest of the user’s data store and their 
ability to use the system as a launching pad for other 
attacks would be diminished. 

When each virtual machine appliance has a small 
number of applications, it is easier to characterize 
expected behaviour. This makes it easier for intrusion 
detection software running on the base machine to watch 
for signs of a compromised system. It also makes it easier 
to configure the virtual machine appliance with a tight 
upper bound on the set of rights to personal data that is 
necessary to accomplish the task. 

However, each additional virtual machine 
appliance requires additional memory when executing and 



additional diskspace to store the operating system and 
other common files. Multiple virtual machine appliances 
also make it more difficult to share data between 
applications. For these reasons, it is best to group as many 
applications with similar requirements together as 
possible. 

Taken to the extreme however this could mean a 
separate virtual machine for each application. We are not 
advocating this extreme. It is easier for users when they 
can exchange data between applications and many 
applications with similar resource, data and security 
requirements can and should be grouped together. In our 
experience with our prototype, we have found that a good 
strategy is to isolate those applications with special 
security needs. For example, applications that are 
commonly attacked (e.g. server software such as web 
servers or database servers) are good candidates for their 
own virtual machine appliance. Similarly, applications 
requiring access to sensitive personal data such as 
financial data are also good candidates for their own 
virtual machine appliance. 
 
2.3.4 Rapid First Time Installation  
Another crucial benefit of virtual machine appliances is 
that in addition to rapid recovery from attack, they also 
provide rapid first time installation of software systems. 
Anyone who has struggled for hours to install and 
configure software that is already running on another 
machine will appreciate this benefit. Preconfigured virtual 
machines with fully functional, preconfigured web 
servers, database servers, etc. would save new users hours 
of headaches assembling and installing all the 
dependencies. This is similar to the benefits of LiveCDs 
that allow users to experiment with fully configured 
versions of software without the drawbacks of slow 
removable, unmodifiable media. 

To quantify both the time saved for a system 
restoration as well as for initial software installation, 
Table 1 lists the time it took us to install a variety of 
software. (We measured the times in Table 1 locally, but 
clearly, individual experiences will vary). The 
measurements listed reflect local experiments installing 
software when the user had already successfully installed 
the software at least once before.  The time it takes new 
users to install this software could be significantly higher 
as they frequently run into problems that can delay them 
for hours or even days; witness the many installation 
FAQs and installation questions posted to message boards 
across the Internet. 

The times in Table 1 can also be considered a 
measure of the time saved whenever a checkpoint of a 
virtual machine appliance is used to recover from attack. 
Each time a virtual machine appliance is recovered from a 
known-good state, this is a lower bound on the time saved 
in reinstallation.  If it has been some time since the user 
installed the software, the time savings are likely to be 
even higher as they must spend time gathering the 
installation materials and possibly stumbling into some of 
the same errors a new user would. 

Table 1: Estimated software installation/ 
configuration/ recovery times for experienced users 

Software Time 
(Hours) 

Base Windows desktop install 1 
Windows desktop install with an 
array of user level software 

3-5 

Base Linux desktop install (RedHat)  0.75 
Base Linux desktop install  
(Gentoo, binary packages) 

3-5 

Linux base installation (RedHat) 
with Apache Web Server and 
MySQL 

1.5 

Linux base installation (RedHat) 
with sendmail 

3 

Spyware removal (typical) 1-2 
 
2.3.5 Model for Software Distribution and Value 
Added Services  
Checkpoints can also be used to transfer working system 
images from one physical host to another. Allowing a user 
to take a working system on an old PC and move it 
painlessly to a new machine.  
This same ability to move working systems images 
between machines could also be viewed as a new model 
for software distribution and or value-added services. A 
pre-configured virtual machine appliance could be 
delivered to a user with well-defined resource 
requirements and connections to the rest of the system 
including the characteristics of any mount points into the 
user’s data store.  

The term “appliance” implies a well-defined 
purpose, well-defined connections to the rest of the world 
and a minimum of unexpected side effects. It also implies 
that little setup is required to begin use and that use does 
not require extensive knowledge of the appliance’s 
workings.  Physical applications typically specify their 
resource requirements and can be replaced with an 
equivalent model if they malfunction. In the case of a 
virtual machine appliance, a user would load it on their 
system and plug it into their data store by mapping its 
defined mount points to the exports from the local file 
system virtual machine.  If the virtual machine appliance 
is attacked or malfunctioned, it would be straightforward 
to replace it with a new functional equivalent without 
losing your personal data. 

Virtual machine appliances provide a new 
platform for value added services including configuration, 
testing and characterization of virtual machine appliances. 
Those who produce virtual machine appliances could 
compete to produce appliances that have the right 
combinations of features, that are easy to “plug in”, that 
have a good track record of being resistant to attacks, that 
use fewer system resources or that set and respect tight 
bounds on their expected behaviour. Appliances that 
reliably provide the advertised service without violating 
their resource requirements would have value to users.  



Virtual machine appliances are particularly attractive in 
the context of open source software because any number 
of applications could be distributed together in a virtual 
machine appliance without concern for licensing 
requirements of each individual software package. 
Similarly, developers of open source software could 
distribute virtual machine appliances with a complete 
development environment including source code with all 
the proper libraries required for compilation and software 
to support debugging and testing. For commercial 
software, this would be more difficult, but not impossible. 
OEMs like Dell, Gateway and Compaq already distribute 
physical machines with commercial software from 
multiple vendors.  
 
2.3.6 Virtual Machine Contracts 
The base machine creates a set of resource limits for each 
virtual machine appliance in several ways. First, the base 
machine can allocate a limited amount of system 
resources such as memory, disk space or even CPU time 
to each guest. Second, the base machine can restrict 
access to the local virtual network and/or the physical 
network connection. In either case, access can be denied 
completely or restricted through firewall rules. Third, the 
intrusion detection system running on the base machine 
monitors the behaviour of the guest for both attack 
signatures and otherwise “innocent” looking traffic that is 
simply unexpected given the purpose of the virtual 
machine appliance.   

These limits can be thought of as a contract with 
the virtual machine appliance. When a virtual machine 
appliance is loaded on the system, a contract is 
established that places limits on its expected set 
behaviour. Accomplishing the required functionality 
under a more restricted contract would be an aspect of a 
high quality virtual machine appliance. Producers of 
virtual machine appliances could charge more for their 
appliance if its behavior was well characterized with a 
clear contract. 
Contracts fix a fundamental problem with running new 
applications.  Applications typically run with a user’s full 
rights, but there is no method for holding them 
accountable for doing only what is advertised. This leads 
directly to Trojan horse exploits in which a piece of 
software claims to accomplish a particular desired task 
when its real purpose is its malicious unadvertised effects. 
On some systems, there are tools like FreeBSD’s jail or 
chroot that allow you to run software with a restricted set 
of access rights. Our system automatically provides that 
type of protection for all software run in a virtual machine 
appliance that is configured with a limited set of 
privileges.  

In our prototype, these contracts are expressed 
through a combination of Snort rules and limits imposed 
by the virtual machine monitor and by the file server 
virtual machine. In the future, we would love to see a 
unified contract language that could be used to express all 
aspects of the contract. Such a contract could be inspected 
by the user and then loaded with the virtual machine 

appliance onto the user’s system.  Tools that make the 
creation, inspection and validation of these contracts 
easier for users and developers would be a helpful 
addition to such a system. 
 
3. Comparison to Full Backups and 
Other Strategies for Providing Data 
Protection and Recovery from Attack 
 
In this section, we compare our architecture to other 
strategies for providing data protection and recovery from 
attack. One common approach to providing data 
protection and recovery from attack is making full 
backups of all data on the physical machine – both 
personal and system data. There are several ways to 
backup a system including copying all files to alternate 
media that can be mounted as a separate file system (e.g. 
a data DVD) or making an exact bootable image of the 
drive with a utility such as Ghost [5].  

Burning data to DVD or other removable media 
creates a portable backup that is well suited to restoring 
personal data and transporting it to other systems. 
Mounting the backup is also an easy way to verify its 
correctness and completeness. However, backups of this 
type are rarely bootable and typically require system state 
to be restored via reinstallation of the operating system 
and applications. For example, even if all the files 
associated with a program are backed-up, the program 
may still not run correctly from the backup (e.g. if it 
requires registry changes, specific shared libraries, kernel 
support, etc. ). 

Making an exact image of the drive with a utility 
such as Ghost is a better way to backup system data. It 
maintains all dependencies between executables and the 
operating system.  Images such as this can typically be 
either booted directly or used to re-image the damaged 
system to a bootable state.  However, images such as this 
are rarely portable to other systems as they contain 
dependencies on the hardware configuration (CPU 
architecture, devices, etc.)   They are also not as 
convenient for mounting on other systems to extract 
individual files and/or to verify the completeness of the 
backup. 

Despite the limitations of backup facilities, our 
system is designed to compliment rather than replace 
backup. Backup is still required in the case of hardware 
failure etc. One goal of our system is to avoid the need for 
restoration from backup by preventing damage to 
personal data and providing rapid recovery of system data 
from known-good checkpoints. Restoring a system from 
backups is often a cumbersome and manual process – not 
to mention an error prone one. Given the small percentage 
of users that regularly backup their system (and the even 
smaller percentage that test the correctness of their 
backups!), it is important to reduce the number of 
situations in which restoring from backup is required. 

Our virtual machine appliances also make 
backups of system data portable to other machines. 



System data is made portable by checkpoints of the 
virtual machine appliances. The virtualization system 
handles abstracting details of the underlying hardware 
platform so that guests will run on any machine. In the 
case of VMware, they even allow the same guests to be 
used on both Windows and Linux base systems. 

When restoring a traditional system from a 
backup, users are typically forced to choose between 
returning their system to a usable state immediately or 
preserving the corrupted system for analysis of the failure 
or attack and possible recovery of data. With our 
architecture, users can save the corrupted system image 
while still immediately restoring a functional image. 
These images are also much smaller than full backups 
because they contain only system data not personal data 
such as a user’s MP3 collection.  

Our system also helps streamline the backup 
process by allowing efforts to focus on the irreplaceable 
personal data rather than on the recoverable system data. 
It also allows backup efforts to be customized to the 
differing needs of system data and personal data. 
Specifically, there is a mismatch between the overall rate 
of change in system data and the user visible rate of 
change.  

System data changes at clearly predictable points 
(e.g. when a new application is installed or a patch is 
applied). Between these points, new system data may be 
written (e.g. logs of system activity or writes to the page 
file), but often this activity is of little interest to users as 
long as the system continues to function. For example, if a 
month’s worth of system logs were lost, most users would 
be perfectly happy as long as the system was returned to 
an internally consistent and functioning state. Therefore, 
there is little need to protect this new system data between 
change points. 

With user data, however, even small changes are 
important. For example, a user may only add 1 page of 
text to a report in an 8 hour workday but the loss of that 
one day of data would be immediately visible. This means 
that efforts to protect user data can be effective even if 
targeted at a small percentage of overall data. Users also 
tend to retain a large body of personal data that is not 
actively being changed.  Incremental backups can be kept 
much smaller when focused on changes to user data rather 
than system data.  

Finally, a key advantage of our system relative to 
backups is that our architecture allows compromised 
virtual machines to be restarted automatically and almost 
instantaneously.  From the time the intrusion detection 
system detects symptoms of an attack, the system can be 
restored to an uncompromised, fully functional system in 
minutes! Similar advantages can be achieved with 
network booting facilities such as Stateless Linux or 
system reset facilities like DeepFreeze especially if used 
in conjunction with personal data mounted from a 
separate physical file server. However, these solutions 
require access to server machines –the fileserver, the boot 
server that supplies new system images, the firewall, etc. 
In many ways, our architecture can be viewed as bringing 

these advantages of a managed LAN architecture with 
multiple machines to a single PC environment.  

 
4. Protection Against Attacks 
 
To assess how well our architecture prevents and helps 
recover from attacks, we began by examining several 
prominent lists of the most recent, most frequent and 
highest impact attacks. In particular, we examined the 17 
US-CERT Current Activity reports [6] from April 2004 to 
March 2005, the 6 most recent Symantec Security 
Response Latest Virus Threats [7] and a collection of 5 
other well-known attacks including the Blaster and 
Slammer worms. For each of the attacks, we analyzed 
whether the architecture presented in the paper would 
effectively mitigate the risk of infection and/or reduce the 
resulting damage and data loss.   

In total, we examined 22 attacks – 11 from US-
CERT, 6 from Symantec and 5 others. (Note: Of the 17 
US-CERT Current Activity reports, only 11 are 
descriptions of viruses; the remaining six are descriptions 
of vulnerabilities.)  In Table 2, we group the majority of 
these attacks into 4 major categories. Of these 22, 12 use 
some sort of backdoor program, 3 write data in an attempt 
to either destroy existing data or to spread themselves by 
masquerading as legitimate executables in shared folders, 
5 read through data in an attempt to harvest email 
addresses or other information and 6 exploit weaknesses 
in specific server software.  In total, 21 out of the 22 
viruses display one or more of these 4 categories of 
behaviour.  The numbers reported in Table 2 sum to more 
than 21 because some viruses display more than one of 
these behaviour patterns.  The remaining uncategorized 
attack is an Excel macro virus that can corrupt personal 
data stored in Excel spreadsheets if that data was mounted 
writeable from the private file server. Our architecture 
would not defend against this attack.  
The architecture we propose has the potential to  protect 
against all four categories of attacks.  Whether a specific 
system would be protected against a given attack depends 
the limits placed on the virtual machine appliances in the 
system (e.g. limits on their access to the personal data 
store, rules monitoring their network activity, etc.). Most 
important are the restrictions on personal data mounted 
from the file server machine to prevent data loss. The 
tighter the bounds that can be placed on the data access 
needs of a virtual machine appliance the better.  
For all categories of attack, if the attack can be limited to 
a single virtual machine appliance, then the worst case 
outcome is that this virtual machine must be rolled back 
to a trusted checkpoint. This is quick relative to traditional 
reinstallation or restoration. For each category of attack, 
there are additional levels of protection. 
 We can defend against backdoor programs and 
programs that exploit specific server software by blocking 
all unneeded ports using firewall software at the base OS 
or virtual machine monitor level.  On a base operating 
system, this may not always be possible because some 
ports exploited by viruses must be left open  for legitimate 



reasons.  For example, the blaster worm infects systems 
via the Microsoft Windows DCOM RPC service that 
listens on TCP port 135.  Most VM's will not need access 
to this port so it will be blocked by default which 
completely removes any threat that the Blaster virus will 
infect those VM's.  Some VM's may need access to TCP 
port 135 and on these systems you would not block it.  In 
this case, an intrusion detection system on the base 
machine could monitor for and recover from many of 
these attacks. 
 

Table 2: Attack Classification and Defenses 
Category # Examples Defenses 

Backdoor 
attacks that 
initiate/listen 
for 
connections 
to send and 
receive data 

1
2 

W32.Sober 
W32.MyDoom 
W32.Bagle 
Sasser 
Phatbot 
Backdoor.Dextenea 
Trojan.Mochi 
Backdoor.Fuwudoor 
PWSteal.Ldpinch.E 
W32.Mugly 
Backdoor.Nibu.J 
Serbian.Trojan 
 

Block unused 
ports or catch 
unexpected 
behavior and 
revert to trusted 
image. 

Attacks that 
copy infected 
exe's to 
shared folders 
or destroy 
data. 

3 W32.Zafi.D 
W32.Netsky 
W32.Netad 
 
 

Write restrictions 
to personal data 
and restart of 
compromised 
VM to trusted 
image. 

Attacks that 
harvests email 
addresses and 
other data. 

5 W32.Zafi.D 
W32.Sober 
PWSteal.Ldpinch.E 
Backdoor.Nibu.J 
W32.MyDoom 
 

Read restrictions, 
detection of 
unexpected 
behavior and 
restart of 
compromised 
VM. 

Exploit 
weaknesses in 
specific 
server 
software. 

6 Santy 
MySQL UDF 
W32.Korgo 
Blaster 
Slammer 
Witty Worm 
 
 

Block unused 
ports if not 
running this 
software. If 
running the 
software, catch 
unexpected 
behavior and 
revert to trusted 
image. 

 
Viruses that spread by writing legitimately 

named executable files to share and user data areas can be 
stopped with a simple file server rule that prevents 
executable files from being written to certain locations. 
  Viruses that harvest user data for email 
addresses and other information like credit card numbers 
and passwords can also be defended against by file server 
rules.  Most user’s email archives do not often need to be 
traversed in full.  This implies that any attempt to read 
every single piece of an email archive could be an 
unauthorized attempt to harvest data.  A file server rule 
that limits the amount of data that can be read in a given 

time interval can be used to thwart such an attack. The 
effects of viruses that destroy massive amount of user 
data, like W32.Netad, can be minimized by using limited 
writing file system rules similar to those discussed 
previously. 

One key benefit of our architecture is that it does 
let people experiment without worry in a virtual machine 
appliance with no access to the file server VM.  In the 
worst cast, the user may shutdown and restore that 
specific VM to the last known-good state and any 
problems are corrected.  Today, many users are hesitant to 
download email attachments or click on certain web links 
for fear of getting a virus.  Some email clients (example: 
certain versions of Microsoft Outlook Express) even 
completely block all incoming executable attachments.  
While this solution does keep the user safe, it forces them 
to be extremely conservative in their online behaviour.  
Our solution allows the users to download even “risky” 
files from inside a VM that mounts no data from the 
private file server.  If, for example, an attachment does 
contain a virus the user can easily restore the virtual 
machine and no permanent damage is done.  In this way, 
we provide a safe “playpen” in which users can test 
uncertain actions without fear of the consequences.       
 
5. Overhead of a Virtual Private File 
Server and Virtual Machine Appliances 
 
In the first four sections, we have presented the benefits 
of our architecture. However, both running programs in a 
virtual machine environment and mounting data from a 
file server virtual machine will clearly introduce overhead 
and reduce performance. The crucial question is how 
much must we pay in terms of overhead for the benefits 
of data protection and rapid recovery.   

To answer this question, we constructed two 
prototype systems. One using Xen on Linux to host Linux 
guest virtual machines and one using VMware on 
Windows to host both Linux and Windows guest virtual 
machines. We constructed both prototypes as described in 
Section 2 with a file server virtual machine running a 
modified version of the NFSv3 file server and a virtual 
network segment that isolated the file server from the 
outside world. 

There are several other VM monitors available 
besides Xen and VMware, but a direct comparison of 
each system is beyond the scope of this paper. We chose 
to use Xen and VMware for our testing for several 
reasons. First, they are virtualization environments rather 
than simply emulators and therefore they provide the 
needed isolation between guests. They can also limit the 
resources consumed by each guest. They both offer 
flexible tools for creating virtual networks inside the 
machine. They both support Linux and a variety of other 
UNIX style operating systems.   

A key advantage of VMware is that it supports 
Windows guests and also runs on Windows as a base 
operating system. This was important given that the 
majority of  viruses target Windows. There are plans to 



implement XenoWindows or Windows guests for Xen, 
but this is not currently available [8].  

Another advantage of using Xen and VMware is 
that there are already published results that quantify their 
overhead relative to base Linux on a variety of workloads 
including SpecInt, SpecWeb, Dbench and OLTP [8] [9] 
[10]. These results show little degradation on Xen guests 
for all workloads and substantial degradation for VMware 
guests on some workloads like OSDB and SpecWeb. 

To these previously published results, we added 
two classes of measurements. First, we ran IOzone [11] to 
quantify the impact on I/O intensive workloads for which 
we expected to see the most degradation. Second, we ran 
Freebench [12] to quantify impact on a range of 
benchmarks that stress CPU and memory performance. 
 We primarily ran our tests on a Pentium 3, 1- 
Ghz machine with 512 MB of memory. We deliberately 
chose an older machine with a moderate amount of 
memory to evaluate the feasibility of our approach for 
average users. We also ran the same measurements on a 
Pentium 4, 2.8 Ghz machine with 1.5 GB of memory. As 
expected, they showed the same or lower overheads than 
measurements on the Pentium 3. (The raw scores were of 
course higher). 
 IOzone consists of 16 different I/O intensive 
access patterns including read, write, random read, 
random write, random mixture and others. For each test, 
IOzone specifies the size of the access and the total size 
of data being touched. We focused on 4 KB reads and 
writes to a file larger than physical memory (2 GB). Each 
measurement reported is the average of 3 runs and 
standard deviation is indicated with error bars. For some 
measurements, the standard deviation is so low that the 
error bars are not visible. 
Figure 2 shows the results of running IOzone under four 
configurations. First, we configured Linux as the base 
operating system and accessed files on a local file system. 

This represents the traditional configuration with no 
virtual machine appliances and no personal file server. 
Second, we ran an NFS file server virtual machine and 
ran IOzone on the Linux base machine (not in a virtual 
machine appliance) and accessed files mounted from the 
NFS file server virtual machine.  Third, we ran IOzone in 
a XenoLinux guest and accessed files that were local to 
that guest. Finally, we ran IOzone in a XenoLinux guest 
and accessed files mounted from the NFS file server 
virtual machine. This final configuration represents our 
proposed architecture while the second and third 
configurations represent intermediate points that help 
isolate the overhead due to different components of the 
system. 
 Figure 2 shows that the full cost of our 
architecture on I/O intensive workloads is 24% overhead 
for writes and 5% overhead for reads. The majority of that 
overhead is due to running the benchmark in the Linux 
guest. The cost of using a local NFS server is low.  We 
ran the Integer and Floating point tests from Freebench in 
the same four configurations. We did not include these in 
the graph, but the overhead of our architecture was at 
most 1% for these tests.  
Figures 3 and 4 show the results of running IOzone read 
and write tests under 8 configurations. These 
configurations are 1) base Windows with a local file 
system, 2) base Windows with data mounted from the 
NFS virtual file server machine, 3) Windows running in a 
VMware guest with a file system local to the guest, 4) 
Windows running in a VMware guest with data mounted 
from the NFS virtual file server machine, 5) base Linux 
with a local file system, 6) base Linux with data mounted 
from the NFS virtual file server machine, 7) Linux 
running in a VMware guest with a file system local to the 
guest, and finally, 8) Linux running in a VMware guest 
with data mounted from the NFS virtual file server 
machine.  

Figure 2: IOzone Read and Write tests, 4 KB accesses to a 2 GB file 
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Configurations 1 and 5 (base Windows and base Linux to 
local file systems) represent traditional configuration with 
no virtual machine appliances and no personal file server.  
Configurations 4 and 8 represent our proposed 
architecture. As in Figure 2, the other 4 configurations 
represent intermediate points that help isolate the 
overhead due to different components of the system. 
The results in Figures 3 and 4 show that the overhead of 
running a Windows guest is substantially higher than for 
Linux guests. The Windows guests using files mounted 
by NFS experience 25% degradation for reads and 41% 
degradation for writes. Interestingly, the Linux VMware 
guests experience nearly the same degradation as the 
Linux guests under Xen. We ran the Integer and Floating 
point tests from Freebench scores in these configurations 
as well and again, there is no significant degradation. 
 From these results, we conclude that the 
overhead of running a private NFS file server to house 
data is small in all configurations. Similarly, the overhead 
of running CPU and memory intensive workloads in a 
virtual machine appliance is also small in all 
configurations. I/O intensive workloads experience a 

significant degradation – 1% to 25% for Linux guests 
under Xen or VMware and 25% to 41% for Windows 
guests under VMware.  The average system workload 
would be a mix of CPU, memory and I/O activity and 
therefore in general the overhead would be lower even for 
Windows guests. Finally, we did see even lower overhead 
in tests on a Pentium 4, 2.8 Ghz machine with 1.5 GB of 
memory. 
 Given the power of modern computers, however, 
users often have resources to spare and we suspect that 
many users would be willing to incur these overheads to 
gain the added security and predictability of the virtual 
machine appliances we have described. Studies of user 
satisfaction with file servers have shown that users prefer 
a system with lower yet predictable performance to a 
system with higher average performance with unexpected 
periods of poor performance [13].  This is an even more 
extreme example. We imagine many users would be 
happy to incur a 25% reduction in speed to be able to 
download email attachments and surf the web secure in 
the knowledge that if attacked they can simply restart the 
compromised virtual machine appliance. 

Figure 4: Iozone Write tests, 4 KB accesses to a 2 GB file 
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Figure 3: IOzone Read tests, 4 KB accesses to a 2 GB file 
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6. Related Work  
 
Virtual machine technology has been available for over 
30 years on mainframes [14] [15], but it is relatively new 
for commodity personal computers [16] [17] [8].  

Today, virtual machine technology on 
commodity hardware has many applications including 
providing multiple operating systems platforms on the 
same physical machine, building efficient honeypot 
machines and providing a stable platform for OS 
development.  As the computing power and storage 
capacities of commodity platforms increase, additional 
applications of virtual machine technology are explored.  
We used VMware and Xen in our prototype, but there are 
many other virtualization or emulation systems available 
like Qemu [18], Bochs [19], VirtualPC [20], Win4Lin 
[21], UserModeLinux [22] [23] [24] [25], FAUmachine 
[26] and others. These all have some limitations for our 
purposes including the degree of resource isolation among 
guests, the expected performance and the number of 
supported platforms. Our goal in this work was the 
construction of a prototype to illustrate our architecture, 
rather than a thorough comparison of 
virtualization/emulation systems. 

Several systems have used virtual machine 
technology to enhance system security and fault tolerance. 
Bressoud and Schneider developed fault-tolerant systems 
using virtual machine technology to replicate the state of 
a primary system to a backup system [27]. Dunlap et al 
used virtual machines to provide secure logging and 
replay [28]. King and Chen used virtual machine 
technology and secure logging to determine the cause of 
an attack after it has occurred [4].  Reed et al used virtual 
machine technology to bring untrusted code safely into a 
shared computing environment [29]. 

We focus on the related problem of rapid system 
restoration and protection of user data. We are unaware of 
another system that has separated user data and system 
data in the way we are proposing and optimized the 
handling of each to provide rapid system restoration after 
an attack. There are system reset facilities such as 
DeepFreeze [30] or Windows System Restore [31]. 
DeepFreeze restores a system to a trusted point each time 
the system is rebooted. Any and all changes made while 
the system is running will be lost on reboot. This is 
similar to the concept of a machine appliance. However, 
DeepFreeze does not facilitate moving appliances 
between physical machines and therefore loses many of 
the benefits of our solution (a new model for system 
distribution, a way to transfer corrupted images for 
analysis and recovery, etc.).  Windows System Restore is 
another system restore utility that monitors and records 
changes to system data on a Windows system (registry 
files, installed programs, etc.) It supports rolling back to a 
previously identified snapshot.  It is limited to Windows 
and only supports rollback of changes to specific system 
files not generic recovery from attacks that could 
compromise other parts of the system. Neither 

DeepFreeze nor Windows System Restore attempt to 
protect user data from damage or loss. 
 
7. Conclusions 
 
We have presented an architecture in which personal data 
is protected in a file server virtual machine and in which 
trusted checkpoints of virtual machine appliances house 
system data and enable rapid recovery from attack.  
We have described numerous benefits of this architecture 
including automatic restart of virtual machine appliances 
when signs of an attack are recognized by an intrusion 
detection system and the ability to protect data on the file 
server virtual machine that has a richer set of mount point 
semantics and that is not even directly accessible from 
remote machines. We have also shown how this 
architecture reduces the risk of regular patches and 
upgrades, facilitates efficient incremental backups that 
focus on unrecoverable personal data, and the ability to 
send checkpoints of compromised machines for analysis 
and recovery. We have discussed how virtual machine 
appliances can be used not only to provide rapid recovery 
from attack, but also to make first time installation and 
configuration of software easier. 

Finally, we have quantified the overhead of two 
prototype implementations of our system and found the 
overhead to be negligible in many configurations. 
Specifically, we find that for Xen, the overhead of read 
intensive workloads is at most 5% and for write intensive 
workloads the overhead is at most 24%. For system 
benchmarks that stress CPU and memory performance, 
we see no noticeable degradation. For Windows guests in 
VMware, we see no noticeable degradation on system 
benchmarks and between 25% and 41% degradation for 
I/O intensive workloads. 

It is our sincere hope that systems like the ones 
described in this paper can be used to free average users 
from constant fear of attack. 
 
References: 
 
[1] P. Loscocco and S. Smalley. Integrating Flexible Support for 
Security Policies into the Linux Operating System. Proceedings 
of the FREENIX Track, 2001 USENIX Annual Technical p. 29 
42, 2001. 

[2] Snort, Barnyard, http://www.snort.org/dl/barnyard, Accessed 
March 2005. 

[3] DFN-Cert, Logsurfer, http://www.cert.dfn.de/eng/logsurf/.  

[4] S. King and P. Chen. Backtracking Intrusions. Proceedings 
of the 19th ACM Symposium on Operating Systems, p. 223-236, 
December 2003. 

[5] Symantec, Norton Ghost, 
http://www.powerquest.com/sabu/ghost/ghost_personal, 
Accessed March 2005. 

[6] US-CERT Current Activity, http://www.us-cert.gov/current, 
Accessed March 24, 2005. 

[7] Symantec, Symantec Security Response, 
http://securityresponse.symantec.com/, Accessed March 2005. 



[8]  P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. 
Ho, R. Neugebauer, I. Pratt and A. Warfield. Xen and the Art of 
Virtualization. Proceedings of the Nineteenth ACM Symposium 
on Operating systems principles, pp 164-177, Bolton Landing, 
NY, USA, 2003  

[9] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. 
Herne, J. Matthews. “Xen and the Art of Repeated Research”, 
2004 USENIX Annual Technical Conference FREENIX Track, 
June 2004. 

[10]] dbench-3.03, http://samba.org/ftp/tridge/dbench, Accessed 
March 2005. 

[11] IOzone 3.2.35, http://www.IOzone.org, Accessed March 
2005. 

[12] Freebench v1.03, http://www.freebench.org, Accessed 
March 2005. 

[13] Erik Riedel and Garth Gibson. Understanding Customer 
Dissatisfaction With Underutilized Distributed File Servers. 
Proceedings of the Fifth NASA Goddard Space Flight Center 
Conference on Mass Storage Systems and Technologies, 
September 17-19, 1996 

[14]  R. Creasy.  The Origin of the VM/370 Time-Sharing 
System.  IBM Journal of Research and Development. Vol. 25, 
Number 5. Page 483. Published 1981.  

[15] R. Goldberg.   Survey of Virtual Machine Research. IEEE 
Computer, p. 34-35, June 1974. 

[16] A. Whitaker, M. Shaw, S. Gribble. Scale and Performance 
in the Denali Isolation Kernel. Proceedings of the 5th 
Symposium on Operating Systems Design and Implementation 
(OSDI 2002), ACM Operating Systems Review, Winter 2002 
Special Issue, pages 195-210, Boston, MA, USA, December 
2002. 

[17] VMware, URL http://www.VMware.com Accessed March 
2005. 

[18] Fabrice Bellard, Qemu, http://fabrice.bellard.free.fr/qemu/, 
Accessed March 2005. 

[19] Kevin Lawton, Bochs, http://bochs.sourceforge.net/, 
Accessed March 2005. 

[20] Microsoft, Virtual PC, 
http://www.microsoft.com/windows/virtualpc/default.mspx, 
Accessed March 2005. 

 [21] NeTraverse, Win4Lin, http://www.netraverse.com/, 
Accessed March 2005. 

[22]  J. Dike. A User-mode Port of the Linux Kernel. 
Proceedings of the 4th Annual Linux Showcase & Conference 
(ALS 2000), page 63, 2000.  

[23]  J. Dike. User-mode Linux. Proceedings of the 5th Annual 
Linux Showcase & Conference, Oakland CA (ALS 2001). pp 3-
14, 2001. 

[24] J. Dike. Making Linux Safe for Virtual Machines. 
Proceedings of the 2002 Ottawa Linux Symposium (OLS), June 
2002. 

[25] Jeff Dike, http://user-mode-linux.sourceforge.net, Accessed 
March 2005. 

[26] Faux Machine, http://www.jsequeira.com/cgi-
bin/virtualization/FauxMachine,  Accessed September 2005. 

[27] T. Bressoud and F. Schneider. Hypervisor-based fault 
tolerance. ACM Transactions on Computer Systems, 14(1):80-
107, February 1996. 

[28] G. Dunlap, S. King, S. Cinar, M. Basrai, P. Chen. ReVirt: 
Enabling Intrusion Detection Analysis through Virtual Machine 
Logging and Replay. Proceedings of the 2002 Symposium on 
Operating Systems Design and Implementation (OSDI), p.211-
224, December 2002. 

[29]  D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford. 
Xenoservers: Accounted Execution of Untrusted Code. 
Proceedings of the 7th Workshop on Hot Topics in Operating 
Systems, 1999. 

[30] Faronics, Deepfreeze, 
http://www.faronics.com/html/deepfreeze.asp, Accessed March 
2005. 

[31] Microsoft, Windows System Restore, 
http://support.microsoft.com/default.aspx?scid=kb;%5BLN%5D
;267951, Accessed September 2005. 

 

 

 

 


