

Data Protection and Rapid Recovery From Attack With A Virtual Private File
Server and Virtual Machine Appliances

Jeanna N. Matthews, Jason J. Herne, Todd M. Deshane, Patty A. Jablonski, Leslie R. Cherian, Mike T. McCabe

Department of Computer Science
Clarkson University

8 Clarkson Avenue, MS 5815
Potsdam, NY 13662

USA
{jnm, hernejj, deshantm, jablonpa, cherialr, mccabemt}@clarkson.edu

ABSTRACT
When a personal computer is attacked, both personal data
like digital photos and system configuration information
like installed programs can be lost. To protect personal
data, we house it in a file server virtual machine running
on the same physical host and export it to other virtual
machines running on the same host. We implement this
private file server virtual machine using a modified
version of an NFS server installed in a virtual machine
under various virtualization environments such as Xen
and VMware. We also demonstrate that by placing the
user’s applications in a virtual machine rather than
directly on the base machine we can provide near instant
recovery of system configuration information. We
quantify the costs of this architecture by comparing
benchmarks running directly on a base operating system
and accessing data in a local filesystem to those running
in a guest operating system and accessing data in an NFS
partition mounted from a file server virtual machine. We
find that for Xen the overhead of read intensive
workloads is at most 5% and for write intensive
workloads the overhead is at most 24%. For system
benchmarks that stress CPU and memory performance,
we see no noticeable degradation.
KEY WORDS
Virtual machines, System recovery

1. Introduction

Worms and viruses have entered the consciousness of
the majority of personal computer users. Even novice
users are aware of the attacks that can come in the form of
email from a friend or a pop-up ad from a web site. Fully
restoring a compromised system is a painful process often
involving reinstalling the operating system and user
applications. This can take hours or days even for trained
professionals with all the proper materials readily on
hand. For average users, even assembling the installation
materials (e.g. CDs, manuals, configuration settings, etc.)
may be an overwhelming task, not to mention correctly
installing and configuring each piece of software.

To make matters worse, the process of restoring a
compromised system to a usable state can frequently
result in the loss of any personal data stored on the
system. From the user’s perspective, this is often the
worst outcome of an attack. System data may be painful
to restore, but it can be restored from public sources.
Personal data, however, can be restored only from private
backups and the vast majority of personal computer users
do not routinely backup their data. Once lost, personal
data can only be recovered through repeated effort (e.g.
rewriting a report) and in some cases can never be
recovered (e.g. digital photos of a one time event).

We propose the use of a specialized virtual private
file server to provide added protection for personal data
and virtual machine appliances to provide rapid
restoration of a functional copy of system data. Personal
data is housed in the virtual private file server and
exported to the virtual machine appliances through
specialized mount points with a richer set of permissions
than the traditional read/write options.

This architecture provides a number of benefits
including 1) the opportunity to separate personal data into
multiple classes to which different finer grained
permissions can be applied, 2) the separation of personal
data from system data allowing each to be backed-up and
restored appropriately, 3) the ability to rapidly install or
restore virtual machines containing fully configured
applications and services, and 4) rapid recovery from
attack by rolling back system data to a known-good state
without losing recent changes to personal data.

In Section 2, we describe our architecture and its
benefits in detail. In Section 3, we compare our
architecture to making regular backups and other
strategies for providing protection of user data and
recovery from attack. In Section 4, we describe how it can
be used to protect against 21 of 22 specific attacks
described in the US-CERT Current Activity Reports and
Symantec Security Response. In Section 5, we quantify
the overhead associated with this architecture by running
a variety of benchmarks on a prototype implemented
using a modified version of NFS in conjunction with
virtual machines in both Xen and VMware. With Xen, we

find no degradation for CPU and memory intensive
workloads and 5-24% degradation for I/O intensive
workloads. With VMware, we also find no degradation
for CPU and memory intensive workloads and 25-41%
degradation on I/O intensive workloads. However,
VMware supports Windows guests which are key to
demonstrating rapid recovery from attack. We discuss
related work in Section 6 and conclusions in Section 7.

2. Architecture

Figure 1 illustrates the main components of our
architecture. A single physical host is home to multiple
virtual machines. First, there is the base machine (labeled
with a 1 in the diagram). This base machine contains a
virtualization environment that can be implemented as a
base operating system running a virtual machine system
such as VMware or as a virtual machine monitor such as
Xen. Second, there is a virtual network (labeled with a 2
in the diagram) that is accessible only to this base
machine and any virtual machine running on this host.
Third, there is a file system virtual machine (labeled with
a 3 in the diagram) that has only one network interface on
the local virtual network. This file system virtual machine
is the permanent home for personal data and exports
subsets of this personal data store via specialized mount
points to local clients. Fourth, there are virtual machine

appliances (labeled with a 4 in the diagram). These virtual
machines house system data such as an operating system
and user applications. They can also house locally created
personal data temporarily.
Virtual machine appliances can have two network
interfaces – one on the physical network bridged through
the base machine and one on the local virtual network.
Depending on its function, a virtual machine appliance
may not need one or both of these network interfaces. For
example, you may choose to browse the web in a virtual
machine appliance with a connection to the physical
network, but with no interface on the local virtual network
to prevent an attack from even reaching the file server
virtual machine. Similarly, you might choose to configure
a virtual machine with only access to the local virtual
network if it has no need to reach the outside world.

2.1 Hardened Base Machine
We have implemented two prototypes of this architecture
using Xen and VMware as the virtual machine monitors.
In both implementations, the base machine is used to
create the local virtual network, the file system virtual
machine and the virtual machine appliances. It is used to
assign resources to each of these guests. It can also be
used to save or restore checkpoints of virtual machine
appliance images.
We also use the base machine as a platform for
monitoring the behaviour of each guest. For example, in

Figure 1: System

our prototype, we run an intrusion detection system on the
base machine. (The base machine could also be used as a
firewall or NAT gateway to further control access to
virtual machine appliances with interfaces on the physical
network.) The intrusion detection system can detect both
attack signatures in incoming traffic and unexpected
behaviour in outgoing traffic.
The security of the base machine is key to the security of
the rest of the system. Therefore, in our prototype, we
“hardened” the base machine by strictly limiting the types
of applications running on the base machine. In particular,
we ran no server applications so there were no open
network ports on the base machine. Alternatively, it
would be possible to open a limited number of ports for
remote administration, but since each open port is a
potential entry point for attack, it is important to carefully
secure each open port. We also installed no client
software such as web browser and email clients that are
common entry points for attack. All normal user activity
takes place in the virtual machine appliances. A machine
with no open ports and few applications running is
significantly harder to attack than a general purpose
machine with many open ports and user applications that
are interacting with the outside world.

2.1 File System Virtual Machine

2.2.1 Hardening the File System Virtual Machine
We implemented the file system virtual machine using a
modified version of Sun’s Network File System (NFS)
version 3 running in a Linux guest virtual machine. Much
like the base machine, the file system virtual machine is
hardened against attack by stripping away any
unnecessary applications and closing all unnecessary
network ports. All the software in the file system virtual
machine is focused on exporting personal data to local
clients and on facilitating maintenance on that data such
as backup.

The file system virtual machine is additionally
protected by only being reachable over the local virtual
network. Attacks cannot target the file system virtual
machine directly. They could only reach the file system
virtual machine by first compromising a virtual machine
appliance. This would involve two successful exploits –
one against an application running in a virtual machine
appliance and one running against the NFS server running
on the file server virtual machine.

2.2.2 Fine-Grain Mount Points
 Personal data is housed in the file system virtual machine
and subsets of it are exported to virtual machine
appliances. This allows you to restrict both the subset of
data a virtual machine can access as well its access rights
to that data.. For example, if you have a virtual machine
appliance running a web server, you limit it to read-only
access to a directory containing the data you want to make
available on the web.
 You can export portions of your user data store
with different permissions in different virtual machine

appliances. For example, you may mount a picture
collection as read only in the virtual machine you use for
most tasks and then only mount it writeable in a virtual
machine used for importing and editing images. This
would prevent your collection of digital photos from
being deleted by malware that compromises your normal
working environment. Similarly, you may choose to make
your financial data accessible within a virtual machine
running only Quicken or you may choose to make old,
rarely changing data read-only except temporarily in the
rare instance that you actually do want to change it.

2.2.2 Richer Mount Point Permissions
We also implemented a richer set of mount point
permissions that allow “write-rarely” or “read-some”
semantics. Specifically, we modified the NFS server to
add read and write rate-limiting capability to each mount
point in addition to full read or write privileges. Using
our modifications, one can specify the amount of data that
can be read or written per unit of time. For example, a
mount point could be classified as reading at most 1% of
the data under the mount point in 1 hour. Such a rule
could prevent malicious code from rapidly scanning the
user’s complete data store.

These read and write limits are just one example
of a richer set of mount point permissions that can be used
to help protect against attack. Append-only permissions
(i.e. the ability to add new files but not modify or delete
existing files) could be used to prevent removal or
corruption of existing data. (SELinux has support for
append-only file systems of this type [1].) For example, a
directory containing photos could be mounted append-
only in one virtual machine appliance allowing it to add
photos, but not to delete existing photos. Another example
would be restricting the size or file extension of files that
are created (e.g. no “.exe” files).

2.3. Virtual Machine Appliances

2.3.1 Configuration of Virtual Machine Appliances
Virtual machine appliances house system state much like
the virtual private file server houses personal data. Each
virtual machine appliance contains a base OS and any
number of user level applications from desktop
productivity applications to server software. They can
have network interfaces on the physical network allowing
communication with the outside world. They can also
have network interfaces on the local virtual network over
which they can mount subsets of personal data from the
file server virtual machine.

There can be multiple mount points from the file
system virtual machine into a client. Each mount point
can have different permissions to allow finer grain control
over the allowable access patterns. For example, in a
single virtual machine, you might mount your mp3
collection read-only, but your documents folder read-
write. Or you might map your email inbox directly in
local storage in a virtual machine, but then move only that

email you want to save onto a read-write volume exported
from the personal file server.

While the base machine and file system virtual
machine are hardened against attack, virtual machine
appliances will, in general, continue to run an
unpredictable mix of user applications including some
high-risk applications. As a result, they may be
susceptible to attack through an open network port
running a vulnerable service or through a user-initiated
download such as email or web content.

2.3.2 Checkpoint and Restart of Virtual Machines
In our prototype, we save known-good checkpoints of
each virtual machine appliance. One important use of a
known-good checkpoint is restoring a compromised
virtual machine appliance from a trusted snapshot. Any
changes made within the virtual machine appliance since
the checkpoint would be lost, but changes to personal data
mounted from the file server machine would be
preserved. In this way, personal data does not become an
automatic casualty of the process of restoring a
compromised system. The checkpoint image would
provide an immediately functional computing platform
with access to the user’s data store from the file system
virtual machine.

Compromised virtual machine appliances can
often be automatically detected by the intrusion detection
system running on the base machine. In our prototype,
when the intrusion detection system detects an attack, we
stop and checkpoint the compromised virtual machine,
restart a known-good checkpoint of the same machine and
notify the user of these actions. This process is nearly
instantaneous – requiring only sufficient time to move the
failed system image to a well-known location and move a
copy of a trusted snapshot into place. It is worth noting
that users can also trigger the restoration process
manually if they suspect a compromise.

To facilitate automated attack detection and
recovery of the virtual machine appliance, we use a
combination of snort rules, log watchers and configurable
shell scripts. Snort is an intrusion detection system that
works by monitoring incoming and outgoing network
traffic and can log (via Snort's Barnyard extension [2])
malicious network activity. A very simple real time log
monitoring utility called Logsurfer [3] is then used to
execute pre-defined actions when it detects that a snort
rule was triggered. Specifically, Logsurfer is configured
to run a set of parameterized shell scripts that manipulate
the virtual machine appliances (shutdown, checkpoint,
and restart or reconfigure such that their network access is
immediately revoked). We choose what action to take
based on which virtual machine caused the fault and the
severity of the Snort rule that caused the action.

The system once restarted would still have the
same vulnerability that was originally attacked. To
prevent future attacks, the trusted image should also be
updated to patch the exploited vulnerability. The
corrupted image can be saved or shipped to a system
administrator for analysis and even possible recovery of

data stored inside. Analysis of the corrupted image and/or
secure logs collected by the virtual machine monitor [4]
could provide clues to what needs to be modified. During
this analysis and recovery process, the user would still
have a functional computing platform with access to the
majority of their data. This is a significant improvement
over the extended down time that is often required when
restoring a compromised system today.

We also limit the number of automatic restarts.
For example, after three restarts of a given image, any
further compromise will result in stopping the virtual
machine and checkpointing, but not in restarting the
“trusted” snapshot.

Users can also use the restoration process to
rollback a virtual machine appliance for any other reason
(e.g. they installed a piece of software and simply don’t
want to keep it in the system). Similarly, the restoration
process can be used to recover from accidental system
corruption, e.g. from a routine patch or upgrade that
introduced instability into the system. Many users do not
regularly apply patches and system upgrades because of
the risk of instability. Stable checkpoints would
encourage users to be compliant with upgrade requests by
allowing them to easily experiment with the upgraded
image. Reducing the risk of regular upgrades and patches
is another subtle way in which virtual machine appliances
enhance system security.

2.3.3 Application Mix in a Virtual Machine Appliance
The number and type of applications in each virtual
machine appliance can be tailored to the usage
requirements and desired level of security. At one end of
the spectrum, there could be only one virtual machine
appliance containing all the software normally installed
on a user’s base machine. However, there could also be
many virtual machine appliances each with a subset of the
user’s software.

Multiple virtual machine appliances allow finer
grained control over resources required, expected
behaviour and the subset of personal data accessed. For
example, a web server virtual machine appliance may be
given read only access to the content it is serving and may
be prevented from establishing outgoing network
connections. Thus even if the web server is attacked, the
damage done to the user’s system is minimized. The
attacker would also be prevented from harvesting
information from the rest of the user’s data store and their
ability to use the system as a launching pad for other
attacks would be diminished.

When each virtual machine appliance has a small
number of applications, it is easier to characterize
expected behaviour. This makes it easier for intrusion
detection software running on the base machine to watch
for signs of a compromised system. It also makes it easier
to configure the virtual machine appliance with a tight
upper bound on the set of rights to personal data that is
necessary to accomplish the task.

However, each additional virtual machine
appliance requires additional memory when executing and

additional diskspace to store the operating system and
other common files. Multiple virtual machine appliances
also make it more difficult to share data between
applications. For these reasons, it is best to group as many
applications with similar requirements together as
possible.

Taken to the extreme however this could mean a
separate virtual machine for each application. We are not
advocating this extreme. It is easier for users when they
can exchange data between applications and many
applications with similar resource, data and security
requirements can and should be grouped together. In our
experience with our prototype, we have found that a good
strategy is to isolate those applications with special
security needs. For example, applications that are
commonly attacked (e.g. server software such as web
servers or database servers) are good candidates for their
own virtual machine appliance. Similarly, applications
requiring access to sensitive personal data such as
financial data are also good candidates for their own
virtual machine appliance.

2.3.4 Rapid First Time Installation
Another crucial benefit of virtual machine appliances is
that in addition to rapid recovery from attack, they also
provide rapid first time installation of software systems.
Anyone who has struggled for hours to install and
configure software that is already running on another
machine will appreciate this benefit. Preconfigured virtual
machines with fully functional, preconfigured web
servers, database servers, etc. would save new users hours
of headaches assembling and installing all the
dependencies. This is similar to the benefits of LiveCDs
that allow users to experiment with fully configured
versions of software without the drawbacks of slow
removable, unmodifiable media.

To quantify both the time saved for a system
restoration as well as for initial software installation,
Table 1 lists the time it took us to install a variety of
software. (We measured the times in Table 1 locally, but
clearly, individual experiences will vary). The
measurements listed reflect local experiments installing
software when the user had already successfully installed
the software at least once before. The time it takes new
users to install this software could be significantly higher
as they frequently run into problems that can delay them
for hours or even days; witness the many installation
FAQs and installation questions posted to message boards
across the Internet.

The times in Table 1 can also be considered a
measure of the time saved whenever a checkpoint of a
virtual machine appliance is used to recover from attack.
Each time a virtual machine appliance is recovered from a
known-good state, this is a lower bound on the time saved
in reinstallation. If it has been some time since the user
installed the software, the time savings are likely to be
even higher as they must spend time gathering the
installation materials and possibly stumbling into some of
the same errors a new user would.

Table 1: Estimated software installation/
configuration/ recovery times for experienced users

Software Time
(Hours)

Base Windows desktop install 1
Windows desktop install with an
array of user level software

3-5

Base Linux desktop install (RedHat) 0.75
Base Linux desktop install
(Gentoo, binary packages)

3-5

Linux base installation (RedHat)
with Apache Web Server and
MySQL

1.5

Linux base installation (RedHat)
with sendmail

3

Spyware removal (typical) 1-2

2.3.5 Model for Software Distribution and Value
Added Services
Checkpoints can also be used to transfer working system
images from one physical host to another. Allowing a user
to take a working system on an old PC and move it
painlessly to a new machine.
This same ability to move working systems images
between machines could also be viewed as a new model
for software distribution and or value-added services. A
pre-configured virtual machine appliance could be
delivered to a user with well-defined resource
requirements and connections to the rest of the system
including the characteristics of any mount points into the
user’s data store.

The term “appliance” implies a well-defined
purpose, well-defined connections to the rest of the world
and a minimum of unexpected side effects. It also implies
that little setup is required to begin use and that use does
not require extensive knowledge of the appliance’s
workings. Physical applications typically specify their
resource requirements and can be replaced with an
equivalent model if they malfunction. In the case of a
virtual machine appliance, a user would load it on their
system and plug it into their data store by mapping its
defined mount points to the exports from the local file
system virtual machine. If the virtual machine appliance
is attacked or malfunctioned, it would be straightforward
to replace it with a new functional equivalent without
losing your personal data.

Virtual machine appliances provide a new
platform for value added services including configuration,
testing and characterization of virtual machine appliances.
Those who produce virtual machine appliances could
compete to produce appliances that have the right
combinations of features, that are easy to “plug in”, that
have a good track record of being resistant to attacks, that
use fewer system resources or that set and respect tight
bounds on their expected behaviour. Appliances that
reliably provide the advertised service without violating
their resource requirements would have value to users.

Virtual machine appliances are particularly attractive in
the context of open source software because any number
of applications could be distributed together in a virtual
machine appliance without concern for licensing
requirements of each individual software package.
Similarly, developers of open source software could
distribute virtual machine appliances with a complete
development environment including source code with all
the proper libraries required for compilation and software
to support debugging and testing. For commercial
software, this would be more difficult, but not impossible.
OEMs like Dell, Gateway and Compaq already distribute
physical machines with commercial software from
multiple vendors.

2.3.6 Virtual Machine Contracts
The base machine creates a set of resource limits for each
virtual machine appliance in several ways. First, the base
machine can allocate a limited amount of system
resources such as memory, disk space or even CPU time
to each guest. Second, the base machine can restrict
access to the local virtual network and/or the physical
network connection. In either case, access can be denied
completely or restricted through firewall rules. Third, the
intrusion detection system running on the base machine
monitors the behaviour of the guest for both attack
signatures and otherwise “innocent” looking traffic that is
simply unexpected given the purpose of the virtual
machine appliance.

These limits can be thought of as a contract with
the virtual machine appliance. When a virtual machine
appliance is loaded on the system, a contract is
established that places limits on its expected set
behaviour. Accomplishing the required functionality
under a more restricted contract would be an aspect of a
high quality virtual machine appliance. Producers of
virtual machine appliances could charge more for their
appliance if its behavior was well characterized with a
clear contract.
Contracts fix a fundamental problem with running new
applications. Applications typically run with a user’s full
rights, but there is no method for holding them
accountable for doing only what is advertised. This leads
directly to Trojan horse exploits in which a piece of
software claims to accomplish a particular desired task
when its real purpose is its malicious unadvertised effects.
On some systems, there are tools like FreeBSD’s jail or
chroot that allow you to run software with a restricted set
of access rights. Our system automatically provides that
type of protection for all software run in a virtual machine
appliance that is configured with a limited set of
privileges.

In our prototype, these contracts are expressed
through a combination of Snort rules and limits imposed
by the virtual machine monitor and by the file server
virtual machine. In the future, we would love to see a
unified contract language that could be used to express all
aspects of the contract. Such a contract could be inspected
by the user and then loaded with the virtual machine

appliance onto the user’s system. Tools that make the
creation, inspection and validation of these contracts
easier for users and developers would be a helpful
addition to such a system.

3. Comparison to Full Backups and
Other Strategies for Providing Data
Protection and Recovery from Attack

In this section, we compare our architecture to other
strategies for providing data protection and recovery from
attack. One common approach to providing data
protection and recovery from attack is making full
backups of all data on the physical machine – both
personal and system data. There are several ways to
backup a system including copying all files to alternate
media that can be mounted as a separate file system (e.g.
a data DVD) or making an exact bootable image of the
drive with a utility such as Ghost [5].

Burning data to DVD or other removable media
creates a portable backup that is well suited to restoring
personal data and transporting it to other systems.
Mounting the backup is also an easy way to verify its
correctness and completeness. However, backups of this
type are rarely bootable and typically require system state
to be restored via reinstallation of the operating system
and applications. For example, even if all the files
associated with a program are backed-up, the program
may still not run correctly from the backup (e.g. if it
requires registry changes, specific shared libraries, kernel
support, etc.).

Making an exact image of the drive with a utility
such as Ghost is a better way to backup system data. It
maintains all dependencies between executables and the
operating system. Images such as this can typically be
either booted directly or used to re-image the damaged
system to a bootable state. However, images such as this
are rarely portable to other systems as they contain
dependencies on the hardware configuration (CPU
architecture, devices, etc.) They are also not as
convenient for mounting on other systems to extract
individual files and/or to verify the completeness of the
backup.

Despite the limitations of backup facilities, our
system is designed to compliment rather than replace
backup. Backup is still required in the case of hardware
failure etc. One goal of our system is to avoid the need for
restoration from backup by preventing damage to
personal data and providing rapid recovery of system data
from known-good checkpoints. Restoring a system from
backups is often a cumbersome and manual process – not
to mention an error prone one. Given the small percentage
of users that regularly backup their system (and the even
smaller percentage that test the correctness of their
backups!), it is important to reduce the number of
situations in which restoring from backup is required.

Our virtual machine appliances also make
backups of system data portable to other machines.

System data is made portable by checkpoints of the
virtual machine appliances. The virtualization system
handles abstracting details of the underlying hardware
platform so that guests will run on any machine. In the
case of VMware, they even allow the same guests to be
used on both Windows and Linux base systems.

When restoring a traditional system from a
backup, users are typically forced to choose between
returning their system to a usable state immediately or
preserving the corrupted system for analysis of the failure
or attack and possible recovery of data. With our
architecture, users can save the corrupted system image
while still immediately restoring a functional image.
These images are also much smaller than full backups
because they contain only system data not personal data
such as a user’s MP3 collection.

Our system also helps streamline the backup
process by allowing efforts to focus on the irreplaceable
personal data rather than on the recoverable system data.
It also allows backup efforts to be customized to the
differing needs of system data and personal data.
Specifically, there is a mismatch between the overall rate
of change in system data and the user visible rate of
change.

System data changes at clearly predictable points
(e.g. when a new application is installed or a patch is
applied). Between these points, new system data may be
written (e.g. logs of system activity or writes to the page
file), but often this activity is of little interest to users as
long as the system continues to function. For example, if a
month’s worth of system logs were lost, most users would
be perfectly happy as long as the system was returned to
an internally consistent and functioning state. Therefore,
there is little need to protect this new system data between
change points.

With user data, however, even small changes are
important. For example, a user may only add 1 page of
text to a report in an 8 hour workday but the loss of that
one day of data would be immediately visible. This means
that efforts to protect user data can be effective even if
targeted at a small percentage of overall data. Users also
tend to retain a large body of personal data that is not
actively being changed. Incremental backups can be kept
much smaller when focused on changes to user data rather
than system data.

Finally, a key advantage of our system relative to
backups is that our architecture allows compromised
virtual machines to be restarted automatically and almost
instantaneously. From the time the intrusion detection
system detects symptoms of an attack, the system can be
restored to an uncompromised, fully functional system in
minutes! Similar advantages can be achieved with
network booting facilities such as Stateless Linux or
system reset facilities like DeepFreeze especially if used
in conjunction with personal data mounted from a
separate physical file server. However, these solutions
require access to server machines –the fileserver, the boot
server that supplies new system images, the firewall, etc.
In many ways, our architecture can be viewed as bringing

these advantages of a managed LAN architecture with
multiple machines to a single PC environment.

4. Protection Against Attacks

To assess how well our architecture prevents and helps
recover from attacks, we began by examining several
prominent lists of the most recent, most frequent and
highest impact attacks. In particular, we examined the 17
US-CERT Current Activity reports [6] from April 2004 to
March 2005, the 6 most recent Symantec Security
Response Latest Virus Threats [7] and a collection of 5
other well-known attacks including the Blaster and
Slammer worms. For each of the attacks, we analyzed
whether the architecture presented in the paper would
effectively mitigate the risk of infection and/or reduce the
resulting damage and data loss.

In total, we examined 22 attacks – 11 from US-
CERT, 6 from Symantec and 5 others. (Note: Of the 17
US-CERT Current Activity reports, only 11 are
descriptions of viruses; the remaining six are descriptions
of vulnerabilities.) In Table 2, we group the majority of
these attacks into 4 major categories. Of these 22, 12 use
some sort of backdoor program, 3 write data in an attempt
to either destroy existing data or to spread themselves by
masquerading as legitimate executables in shared folders,
5 read through data in an attempt to harvest email
addresses or other information and 6 exploit weaknesses
in specific server software. In total, 21 out of the 22
viruses display one or more of these 4 categories of
behaviour. The numbers reported in Table 2 sum to more
than 21 because some viruses display more than one of
these behaviour patterns. The remaining uncategorized
attack is an Excel macro virus that can corrupt personal
data stored in Excel spreadsheets if that data was mounted
writeable from the private file server. Our architecture
would not defend against this attack.
The architecture we propose has the potential to protect
against all four categories of attacks. Whether a specific
system would be protected against a given attack depends
the limits placed on the virtual machine appliances in the
system (e.g. limits on their access to the personal data
store, rules monitoring their network activity, etc.). Most
important are the restrictions on personal data mounted
from the file server machine to prevent data loss. The
tighter the bounds that can be placed on the data access
needs of a virtual machine appliance the better.
For all categories of attack, if the attack can be limited to
a single virtual machine appliance, then the worst case
outcome is that this virtual machine must be rolled back
to a trusted checkpoint. This is quick relative to traditional
reinstallation or restoration. For each category of attack,
there are additional levels of protection.
 We can defend against backdoor programs and
programs that exploit specific server software by blocking
all unneeded ports using firewall software at the base OS
or virtual machine monitor level. On a base operating
system, this may not always be possible because some
ports exploited by viruses must be left open for legitimate

reasons. For example, the blaster worm infects systems
via the Microsoft Windows DCOM RPC service that
listens on TCP port 135. Most VM's will not need access
to this port so it will be blocked by default which
completely removes any threat that the Blaster virus will
infect those VM's. Some VM's may need access to TCP
port 135 and on these systems you would not block it. In
this case, an intrusion detection system on the base
machine could monitor for and recover from many of
these attacks.

Table 2: Attack Classification and Defenses
Category # Examples Defenses

Backdoor
attacks that
initiate/listen
for
connections
to send and
receive data

1
2

W32.Sober
W32.MyDoom
W32.Bagle
Sasser
Phatbot
Backdoor.Dextenea
Trojan.Mochi
Backdoor.Fuwudoor
PWSteal.Ldpinch.E
W32.Mugly
Backdoor.Nibu.J
Serbian.Trojan

Block unused
ports or catch
unexpected
behavior and
revert to trusted
image.

Attacks that
copy infected
exe's to
shared folders
or destroy
data.

3 W32.Zafi.D
W32.Netsky
W32.Netad

Write restrictions
to personal data
and restart of
compromised
VM to trusted
image.

Attacks that
harvests email
addresses and
other data.

5 W32.Zafi.D
W32.Sober
PWSteal.Ldpinch.E
Backdoor.Nibu.J
W32.MyDoom

Read restrictions,
detection of
unexpected
behavior and
restart of
compromised
VM.

Exploit
weaknesses in
specific
server
software.

6 Santy
MySQL UDF
W32.Korgo
Blaster
Slammer
Witty Worm

Block unused
ports if not
running this
software. If
running the
software, catch
unexpected
behavior and
revert to trusted
image.

Viruses that spread by writing legitimately

named executable files to share and user data areas can be
stopped with a simple file server rule that prevents
executable files from being written to certain locations.
 Viruses that harvest user data for email
addresses and other information like credit card numbers
and passwords can also be defended against by file server
rules. Most user’s email archives do not often need to be
traversed in full. This implies that any attempt to read
every single piece of an email archive could be an
unauthorized attempt to harvest data. A file server rule
that limits the amount of data that can be read in a given

time interval can be used to thwart such an attack. The
effects of viruses that destroy massive amount of user
data, like W32.Netad, can be minimized by using limited
writing file system rules similar to those discussed
previously.

One key benefit of our architecture is that it does
let people experiment without worry in a virtual machine
appliance with no access to the file server VM. In the
worst cast, the user may shutdown and restore that
specific VM to the last known-good state and any
problems are corrected. Today, many users are hesitant to
download email attachments or click on certain web links
for fear of getting a virus. Some email clients (example:
certain versions of Microsoft Outlook Express) even
completely block all incoming executable attachments.
While this solution does keep the user safe, it forces them
to be extremely conservative in their online behaviour.
Our solution allows the users to download even “risky”
files from inside a VM that mounts no data from the
private file server. If, for example, an attachment does
contain a virus the user can easily restore the virtual
machine and no permanent damage is done. In this way,
we provide a safe “playpen” in which users can test
uncertain actions without fear of the consequences.

5. Overhead of a Virtual Private File
Server and Virtual Machine Appliances

In the first four sections, we have presented the benefits
of our architecture. However, both running programs in a
virtual machine environment and mounting data from a
file server virtual machine will clearly introduce overhead
and reduce performance. The crucial question is how
much must we pay in terms of overhead for the benefits
of data protection and rapid recovery.

To answer this question, we constructed two
prototype systems. One using Xen on Linux to host Linux
guest virtual machines and one using VMware on
Windows to host both Linux and Windows guest virtual
machines. We constructed both prototypes as described in
Section 2 with a file server virtual machine running a
modified version of the NFSv3 file server and a virtual
network segment that isolated the file server from the
outside world.

There are several other VM monitors available
besides Xen and VMware, but a direct comparison of
each system is beyond the scope of this paper. We chose
to use Xen and VMware for our testing for several
reasons. First, they are virtualization environments rather
than simply emulators and therefore they provide the
needed isolation between guests. They can also limit the
resources consumed by each guest. They both offer
flexible tools for creating virtual networks inside the
machine. They both support Linux and a variety of other
UNIX style operating systems.

A key advantage of VMware is that it supports
Windows guests and also runs on Windows as a base
operating system. This was important given that the
majority of viruses target Windows. There are plans to

implement XenoWindows or Windows guests for Xen,
but this is not currently available [8].

Another advantage of using Xen and VMware is
that there are already published results that quantify their
overhead relative to base Linux on a variety of workloads
including SpecInt, SpecWeb, Dbench and OLTP [8] [9]
[10]. These results show little degradation on Xen guests
for all workloads and substantial degradation for VMware
guests on some workloads like OSDB and SpecWeb.

To these previously published results, we added
two classes of measurements. First, we ran IOzone [11] to
quantify the impact on I/O intensive workloads for which
we expected to see the most degradation. Second, we ran
Freebench [12] to quantify impact on a range of
benchmarks that stress CPU and memory performance.
 We primarily ran our tests on a Pentium 3, 1-
Ghz machine with 512 MB of memory. We deliberately
chose an older machine with a moderate amount of
memory to evaluate the feasibility of our approach for
average users. We also ran the same measurements on a
Pentium 4, 2.8 Ghz machine with 1.5 GB of memory. As
expected, they showed the same or lower overheads than
measurements on the Pentium 3. (The raw scores were of
course higher).
 IOzone consists of 16 different I/O intensive
access patterns including read, write, random read,
random write, random mixture and others. For each test,
IOzone specifies the size of the access and the total size
of data being touched. We focused on 4 KB reads and
writes to a file larger than physical memory (2 GB). Each
measurement reported is the average of 3 runs and
standard deviation is indicated with error bars. For some
measurements, the standard deviation is so low that the
error bars are not visible.
Figure 2 shows the results of running IOzone under four
configurations. First, we configured Linux as the base
operating system and accessed files on a local file system.

This represents the traditional configuration with no
virtual machine appliances and no personal file server.
Second, we ran an NFS file server virtual machine and
ran IOzone on the Linux base machine (not in a virtual
machine appliance) and accessed files mounted from the
NFS file server virtual machine. Third, we ran IOzone in
a XenoLinux guest and accessed files that were local to
that guest. Finally, we ran IOzone in a XenoLinux guest
and accessed files mounted from the NFS file server
virtual machine. This final configuration represents our
proposed architecture while the second and third
configurations represent intermediate points that help
isolate the overhead due to different components of the
system.
 Figure 2 shows that the full cost of our
architecture on I/O intensive workloads is 24% overhead
for writes and 5% overhead for reads. The majority of that
overhead is due to running the benchmark in the Linux
guest. The cost of using a local NFS server is low. We
ran the Integer and Floating point tests from Freebench in
the same four configurations. We did not include these in
the graph, but the overhead of our architecture was at
most 1% for these tests.
Figures 3 and 4 show the results of running IOzone read
and write tests under 8 configurations. These
configurations are 1) base Windows with a local file
system, 2) base Windows with data mounted from the
NFS virtual file server machine, 3) Windows running in a
VMware guest with a file system local to the guest, 4)
Windows running in a VMware guest with data mounted
from the NFS virtual file server machine, 5) base Linux
with a local file system, 6) base Linux with data mounted
from the NFS virtual file server machine, 7) Linux
running in a VMware guest with a file system local to the
guest, and finally, 8) Linux running in a VMware guest
with data mounted from the NFS virtual file server
machine.

Figure 2: IOzone Read and Write tests, 4 KB accesses to a 2 GB file

Iozone Measurements
Xen on Pentium 3

0
5,000

10,000
15,000
20,000
25,000
30,000
35,000

Write Read

T
h

ro
u

g
h

p
u

t
(K

B
/S

ec
)

Base Linux on Local File System Base Linux on NFS File System

Xen Linux Guest on Local File System Xen Linux Guest on NFS File System

1.0 1.0
.77 .76

1.0 1.0 .96 .95

Configurations 1 and 5 (base Windows and base Linux to
local file systems) represent traditional configuration with
no virtual machine appliances and no personal file server.
Configurations 4 and 8 represent our proposed
architecture. As in Figure 2, the other 4 configurations
represent intermediate points that help isolate the
overhead due to different components of the system.
The results in Figures 3 and 4 show that the overhead of
running a Windows guest is substantially higher than for
Linux guests. The Windows guests using files mounted
by NFS experience 25% degradation for reads and 41%
degradation for writes. Interestingly, the Linux VMware
guests experience nearly the same degradation as the
Linux guests under Xen. We ran the Integer and Floating
point tests from Freebench scores in these configurations
as well and again, there is no significant degradation.
 From these results, we conclude that the
overhead of running a private NFS file server to house
data is small in all configurations. Similarly, the overhead
of running CPU and memory intensive workloads in a
virtual machine appliance is also small in all
configurations. I/O intensive workloads experience a

significant degradation – 1% to 25% for Linux guests
under Xen or VMware and 25% to 41% for Windows
guests under VMware. The average system workload
would be a mix of CPU, memory and I/O activity and
therefore in general the overhead would be lower even for
Windows guests. Finally, we did see even lower overhead
in tests on a Pentium 4, 2.8 Ghz machine with 1.5 GB of
memory.
 Given the power of modern computers, however,
users often have resources to spare and we suspect that
many users would be willing to incur these overheads to
gain the added security and predictability of the virtual
machine appliances we have described. Studies of user
satisfaction with file servers have shown that users prefer
a system with lower yet predictable performance to a
system with higher average performance with unexpected
periods of poor performance [13]. This is an even more
extreme example. We imagine many users would be
happy to incur a 25% reduction in speed to be able to
download email attachments and surf the web secure in
the knowledge that if attacked they can simply restart the
compromised virtual machine appliance.

Figure 4: Iozone Write tests, 4 KB accesses to a 2 GB file

Iozone Write Measurements
VMware on Pentium 3

0

10,000

20,000

30,000

40,000

Base Windows VMware
Windows Guest

Base Linux VMware Linux
Guest

Th
ro

ug
hp

ut
 (K

B
/S

ec
)

Local File System NFS File System

1.0 1.0
.81 .75

1.0 1.0 .76.77

Figure 3: IOzone Read tests, 4 KB accesses to a 2 GB file

Iozone Read Measurements
VMware on Pentium 3

0
5,000

10,000
15,000
20,000
25,000
30,000
35,000

Base Windows VMware
Windows Guest

Base Linux VMware Linux
Guest

T
h

ro
u

g
h

p
u

t
(K

B
/S

ec
)

Local File System NFS File System

1.0 1.0
.61 .59

1.01.0 1.1 .99

6. Related Work

Virtual machine technology has been available for over
30 years on mainframes [14] [15], but it is relatively new
for commodity personal computers [16] [17] [8].

Today, virtual machine technology on
commodity hardware has many applications including
providing multiple operating systems platforms on the
same physical machine, building efficient honeypot
machines and providing a stable platform for OS
development. As the computing power and storage
capacities of commodity platforms increase, additional
applications of virtual machine technology are explored.
We used VMware and Xen in our prototype, but there are
many other virtualization or emulation systems available
like Qemu [18], Bochs [19], VirtualPC [20], Win4Lin
[21], UserModeLinux [22] [23] [24] [25], FAUmachine
[26] and others. These all have some limitations for our
purposes including the degree of resource isolation among
guests, the expected performance and the number of
supported platforms. Our goal in this work was the
construction of a prototype to illustrate our architecture,
rather than a thorough comparison of
virtualization/emulation systems.

Several systems have used virtual machine
technology to enhance system security and fault tolerance.
Bressoud and Schneider developed fault-tolerant systems
using virtual machine technology to replicate the state of
a primary system to a backup system [27]. Dunlap et al
used virtual machines to provide secure logging and
replay [28]. King and Chen used virtual machine
technology and secure logging to determine the cause of
an attack after it has occurred [4]. Reed et al used virtual
machine technology to bring untrusted code safely into a
shared computing environment [29].

We focus on the related problem of rapid system
restoration and protection of user data. We are unaware of
another system that has separated user data and system
data in the way we are proposing and optimized the
handling of each to provide rapid system restoration after
an attack. There are system reset facilities such as
DeepFreeze [30] or Windows System Restore [31].
DeepFreeze restores a system to a trusted point each time
the system is rebooted. Any and all changes made while
the system is running will be lost on reboot. This is
similar to the concept of a machine appliance. However,
DeepFreeze does not facilitate moving appliances
between physical machines and therefore loses many of
the benefits of our solution (a new model for system
distribution, a way to transfer corrupted images for
analysis and recovery, etc.). Windows System Restore is
another system restore utility that monitors and records
changes to system data on a Windows system (registry
files, installed programs, etc.) It supports rolling back to a
previously identified snapshot. It is limited to Windows
and only supports rollback of changes to specific system
files not generic recovery from attacks that could
compromise other parts of the system. Neither

DeepFreeze nor Windows System Restore attempt to
protect user data from damage or loss.

7. Conclusions

We have presented an architecture in which personal data
is protected in a file server virtual machine and in which
trusted checkpoints of virtual machine appliances house
system data and enable rapid recovery from attack.
We have described numerous benefits of this architecture
including automatic restart of virtual machine appliances
when signs of an attack are recognized by an intrusion
detection system and the ability to protect data on the file
server virtual machine that has a richer set of mount point
semantics and that is not even directly accessible from
remote machines. We have also shown how this
architecture reduces the risk of regular patches and
upgrades, facilitates efficient incremental backups that
focus on unrecoverable personal data, and the ability to
send checkpoints of compromised machines for analysis
and recovery. We have discussed how virtual machine
appliances can be used not only to provide rapid recovery
from attack, but also to make first time installation and
configuration of software easier.

Finally, we have quantified the overhead of two
prototype implementations of our system and found the
overhead to be negligible in many configurations.
Specifically, we find that for Xen, the overhead of read
intensive workloads is at most 5% and for write intensive
workloads the overhead is at most 24%. For system
benchmarks that stress CPU and memory performance,
we see no noticeable degradation. For Windows guests in
VMware, we see no noticeable degradation on system
benchmarks and between 25% and 41% degradation for
I/O intensive workloads.

It is our sincere hope that systems like the ones
described in this paper can be used to free average users
from constant fear of attack.

References:

[1] P. Loscocco and S. Smalley. Integrating Flexible Support for
Security Policies into the Linux Operating System. Proceedings
of the FREENIX Track, 2001 USENIX Annual Technical p. 29
42, 2001.

[2] Snort, Barnyard, http://www.snort.org/dl/barnyard, Accessed
March 2005.

[3] DFN-Cert, Logsurfer, http://www.cert.dfn.de/eng/logsurf/.

[4] S. King and P. Chen. Backtracking Intrusions. Proceedings
of the 19th ACM Symposium on Operating Systems, p. 223-236,
December 2003.

[5] Symantec, Norton Ghost,
http://www.powerquest.com/sabu/ghost/ghost_personal,
Accessed March 2005.

[6] US-CERT Current Activity, http://www.us-cert.gov/current,
Accessed March 24, 2005.

[7] Symantec, Symantec Security Response,
http://securityresponse.symantec.com/, Accessed March 2005.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt and A. Warfield. Xen and the Art of
Virtualization. Proceedings of the Nineteenth ACM Symposium
on Operating systems principles, pp 164-177, Bolton Landing,
NY, USA, 2003

[9] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J.
Herne, J. Matthews. “Xen and the Art of Repeated Research”,
2004 USENIX Annual Technical Conference FREENIX Track,
June 2004.

[10]] dbench-3.03, http://samba.org/ftp/tridge/dbench, Accessed
March 2005.

[11] IOzone 3.2.35, http://www.IOzone.org, Accessed March
2005.

[12] Freebench v1.03, http://www.freebench.org, Accessed
March 2005.

[13] Erik Riedel and Garth Gibson. Understanding Customer
Dissatisfaction With Underutilized Distributed File Servers.
Proceedings of the Fifth NASA Goddard Space Flight Center
Conference on Mass Storage Systems and Technologies,
September 17-19, 1996

[14] R. Creasy. The Origin of the VM/370 Time-Sharing
System. IBM Journal of Research and Development. Vol. 25,
Number 5. Page 483. Published 1981.

[15] R. Goldberg. Survey of Virtual Machine Research. IEEE
Computer, p. 34-35, June 1974.

[16] A. Whitaker, M. Shaw, S. Gribble. Scale and Performance
in the Denali Isolation Kernel. Proceedings of the 5th
Symposium on Operating Systems Design and Implementation
(OSDI 2002), ACM Operating Systems Review, Winter 2002
Special Issue, pages 195-210, Boston, MA, USA, December
2002.

[17] VMware, URL http://www.VMware.com Accessed March
2005.

[18] Fabrice Bellard, Qemu, http://fabrice.bellard.free.fr/qemu/,
Accessed March 2005.

[19] Kevin Lawton, Bochs, http://bochs.sourceforge.net/,
Accessed March 2005.

[20] Microsoft, Virtual PC,
http://www.microsoft.com/windows/virtualpc/default.mspx,
Accessed March 2005.

 [21] NeTraverse, Win4Lin, http://www.netraverse.com/,
Accessed March 2005.

[22] J. Dike. A User-mode Port of the Linux Kernel.
Proceedings of the 4th Annual Linux Showcase & Conference
(ALS 2000), page 63, 2000.

[23] J. Dike. User-mode Linux. Proceedings of the 5th Annual
Linux Showcase & Conference, Oakland CA (ALS 2001). pp 3-
14, 2001.

[24] J. Dike. Making Linux Safe for Virtual Machines.
Proceedings of the 2002 Ottawa Linux Symposium (OLS), June
2002.

[25] Jeff Dike, http://user-mode-linux.sourceforge.net, Accessed
March 2005.

[26] Faux Machine, http://www.jsequeira.com/cgi-
bin/virtualization/FauxMachine, Accessed September 2005.

[27] T. Bressoud and F. Schneider. Hypervisor-based fault
tolerance. ACM Transactions on Computer Systems, 14(1):80-
107, February 1996.

[28] G. Dunlap, S. King, S. Cinar, M. Basrai, P. Chen. ReVirt:
Enabling Intrusion Detection Analysis through Virtual Machine
Logging and Replay. Proceedings of the 2002 Symposium on
Operating Systems Design and Implementation (OSDI), p.211-
224, December 2002.

[29] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford.
Xenoservers: Accounted Execution of Untrusted Code.
Proceedings of the 7th Workshop on Hot Topics in Operating
Systems, 1999.

[30] Faronics, Deepfreeze,
http://www.faronics.com/html/deepfreeze.asp, Accessed March
2005.

[31] Microsoft, Windows System Restore,
http://support.microsoft.com/default.aspx?scid=kb;%5BLN%5D
;267951, Accessed September 2005.

