
Proceedings of 11th International Conference on Human-Computer Interaction, 
Volume 7, July 2005. 

 
Deciding Layers: Adaptive Composition of Layers in a Multi-

Layer User Interface 
 

 
Bryan Clark 

 
Red Hat 

10 Technology Park Drive 
Westford, MA 

bclark@redhat.com 

Jeanna Matthews 
 

Clarkson University 
8 Clarkson Avenue 
Potsdam, NY 13699 
 jnm@clarkson.edu 

 
 
Abstract 
 
We discuss the composition of layers in a Multi-Layer User Interface.   Specifically, we define 
Features Layers to be layers composed of features from a single category (e.g. photo editing 
features might make up one feature layer and text formatting features another). We contrast this 
with Mixed Layers or layers that contain a mix of features from many categories. The finer-
grained Feature Layers give users greater control over the exact features added to the application.  
We also present two new methods for automatically adding new layers to an interface based on the 
user’s prior experience with similar applications and based on how the application is launched. We 
describe a blogging application we have implemented to explore these concepts. 
 
 
1 Introduction 
 
Feature-rich applications often accomplish more tasks than any single user requires.  Although 
users approach such an application with many different goals, the application is still presented to 
each user with the same interface.  Exposing every feature to all users produces a “bloated” 
collection of menus and toolbars.  By making it possible to do many things, the designers make it 
difficult to actually do any one thing!  
 
Interface designers attempt to tailor these complex applications to suite the majority of users.  This 
process leaves an application that is not designed for the first time user nor for the advanced user, 
but rather for the mid-level user.  First-time users are left struggling to understand the basic 
features they need to accomplish simple tasks.  First-time users of an application do not want to 
spend the time to learn how to use the software properly; they are most concerned with getting 
their task finished.  A recent study has shown that those who are new to computers (Kraut, 
Scherlis, Mukhopadhyay, Manning & Kiesler, 1996) are not taking advantage of all that 
computers and the Internet have to offer because of frustration with complicated software.   
 
Studies have shown that even advanced users waste 45% of their time with frustrating interface 
experiences (Ceaparu, Lazar, Bessiere, Robinson & Shneiderman, 2004). Problems reported by 
advances users include indecipherable error dialogs and hard to find functions and menus.     
 



Proceedings of 11th International Conference on Human-Computer Interaction, 
Volume 7, July 2005. 

It is important to note that “advanced” users of complex applications are often advanced in a 
single category of the applications features and not others.  For example, a photographer using 
presentation software may desire more photo editing options from their interface, while an editor 
using the same software may desire text-formatting options. Advanced users often need only a 
subset of functions, while applications display the complete set of functions in a maze of menus to 
search through. 
 
Interface designers target the mid-level user because it is simpler than designing custom interfaces 
for each user group. Creating custom interfaces for first-time users, mid-level users and users 
advanced in every subset of an application’s functionality would be overly time-consuming and 
costly.  
 
Multi-Layer Interface design (Shneiderman, 2003) is an Adaptive User Interface strategy for 
satisfying the needs of first-time through advanced users all within the same application.  
Designers create a single interface, but group features into layers. First-time users begin at this 
first and simplest layer where the core functionality of the application is clearly exposed without 
many additional options.  Then as users gain experience with the application and desire additional 
features, they can move up to a more advanced layer.  Each new layer can add new features and/or 
present different existing features in a new way corresponding to the users’ understanding of the 
application.  The highest layer provides the most features and functionality possible and is 
designed with the most experienced user in mind.   
 
We begin with Shneiderman’s description of Multi-Layer interface design and further define two 
distinct categories of layers within a Multi-Layer system – Feature Layers and Mixed Layers. We 
define Features Layers to be layers composed of a single category of features (e.g. photo-editing 
features in one feature layer and text formatting features in another). We define Mixed Layers to 
be layers that present advanced levels of features from multiple categories in the same layer (e.g. a 
layer that adds a few advanced photo-editing features together with a few text formatting features). 
 
Mixed Layers correspond most directly to the examples presented in (Shneiderman, 2003) where 
applications have a slider bar by which users can advance through a hierarchy of layers. We argue 
that Feature Layers can provide a more natural user interface by allowing users to advance farther 
in some feature sets than others. Mixed layers require users to advance on all fronts and make it 
impossible for users who are advanced in one aspect to avoid cluttering their interface with every 
possible option. 
  
In addition to this definition of Mixed and Feature Layers, we present two new methods of 
automatically adding layers to a user interface – specifically progression based on how the 
application is launched and progression based on assessing a user’s prior experience with other 
similar applications. If the application can detect previously created content on its first run, the 
application can assume user is experienced with that type of content and will add interface layers 
to complement the users’ experience.  A second method of progression is done from application 
launch. As the user launches the application from different file types, via a right click menu 
option, the interface adapts to show features relevant to the type of file used to launch the 
application. 
 
To demonstrate the new definitions of layers and the new methods of dynamically adapting those 
layers in a multi-layer interface we have built an example implementation.  The example 
application is a Blog-Editor, an application for posting entries into a person’s web-log 



Proceedings of 11th International Conference on Human-Computer Interaction, 
Volume 7, July 2005. 

(Wentworth, 2003).  The application is a simple text editor with features to change text alignment, 
add styled text, links and images. 
 
2 Feature Layers and Mixed Layers 
   
The original work on Multi-Layer Interfaces was presented with a sketch of a two different 
application designs, given to promote the idea and encourage the adoption of the system.  For 
example, one sketch showed a simple word processor with 8 layers gaining more and more 
features as the user increased the slider attached to the windows right-hand side to a higher level.   
 
To highlight the difference between the original multi-layer design ideas and ours we introduce 
two new definitions, Mixed Layers and Feature Layers.  In Mixed Layers, dissimilar features are 
grouped together in one layer. With each layer added to the interface, the user is presented with 
some features they want and some they may not be ready for.  For example, a user of a word 
processing application may be presented with advanced printing options at the same time they are 
presented with advanced document editing features like table editing.  If the user has only the need 
for advanced document editing features but advances on features like printing, then they will have 
to learn both at the same time, when this may not be their goal. 
 
Table 1 describes a sample set of features that might be present in a blog editor with a Mixed 
Layer interface.  Each layer may consist of font style features, text alignment features, list 
features, link features and picture features. For example, at the lowest layer (layer 1), users have 
several font features including bold, italic and underline. They also have a list feature, bulleted 
lists and a link feature, creating links in a blog. Users have no photo handling features at layer 1.  
 
At layer 2, users gain both additional font editing features (underline and strike through) as well as 
text alignment features (left, center, and right justification). They do not gain additional list or link 
features relative to layer 1 and they still have no photo handling features.  
 
Notice that these layers seem somewhat arbitrary. Layer 2, for example, was constructed by the 
designer with the assumption that editing or adding pictures to a web-log is an advanced task that 
would be most understood by a user who understands how to work with styled text, aligned text, 
lists, and links first. However, there is no reason to force a user to add font style and text 
alignment features before picture manipulation. In this Mixed Layer approach, the user is forced to 
follow the designer’s concept of which features are easy and which are advanced. 
 
 
 
 
 
 
 
 
 
 
 
 



Proceedings of 11th International Conference on Human-Computer Interaction, 
Volume 7, July 2005. 

 
 

Mixed 
Layer Features and Feature Levels in Layer 
 

Font Style Text Alignment Lists Links Pictures 

1 Bold, Italic, 
Underline None Bulleted List Create Links None 

2 
Bold, Italic, 
Underline Strike-
Through 

Left, Center, Right Bulleted List Create Links None 

3 ……  PPrrooggrraamm  CCooddee  
Left, Center, Right, 
Justified 

Bulleted, 
Numerical List 

Create Links, 
Anchors Add Pictures 

4 ……  PPrrooggrraamm  CCooddee  
Left, Center, Right, 
Justified 

Bulleted, 
Numerical List 

Create Links, 
Anchors 

Add, Edit 
Picture Sizes 

5 ……  PPrrooggrraamm  CCooddee  
Left, Center, Right, 
Justified 

Bulleted, 
Numerical List 

Create Links, 
Anchors 

Add, Edit, Align 
Pictures 

Table 1 - Mixed Layers groups multiple feature sets together at different levels to create a 
single layer of the interface 

 
Feature Layers, on the other hand, consist of similar features (e.g. all the photo editing features). 
Within a feature layer, there can be multiple levels. Similar features that not easily learned 
together are placed in a higher level of the same feature layer.  An advantage that Feature Layers 
have over Mixed Layers is the amount of control given to the user instead of the application 
designer.  Feature layers are smaller pieces of functionality that allow the user to choose the exact 
set that they would like.  Mixed layers require the application designer to know what features 
would best suite the user, with each layer the user advances on all fronts rather than just a single 
group of similar features.   
 
Table 2 shows the layout of the Feature Layers in our Blog-Editor with features layers on the left 
column and the available advanced levels in the columns to the right.  Feature Layer levels can 
have numbers associated with them, however this is simply for easy reference and carries no 
actual meaning to the numerical values of the level.  Recall that a fundamental Feature Layer idea 
is that any layer can be added with any combination of levels, not just linearly.  For example an 
interface may contain the highest level, ‘Program Code’, of the feature layer ‘Font Style’ and not 
contain any ‘Text Alignment’ or ‘Links’ features. 
 
 
Feature Layers Layer Levels       1 ����                  2 ����                    3 ���� 

Font Style Bold, Italic, Underline Strike-Through PPrrooggrraamm  CCooddee  

Text Alignment Left, Center, Right Justified  

Lists Bulleted Lists Numbered Lists  

Links Create Links Create Anchors  



Proceedings of 11th International Conference on Human-Computer Interaction, 
Volume 7, July 2005. 

Pictures Add Pictures Edit Picture Size Align Pictures 

Table 2 - Feature Layers and Layer levels are individually chosen by the user 

By having layers of similar features the user has more control over what features are present in 
their interface as new layers are added.  Font styles bold, italic and underline were grouped 
together into a layer because they are all very similar and easily learned at the same time.  
However the style option of “pre-formatting”, often used to show program code or other text with 
mono-spaced format needs, is not always understood by beginning users but is useful to advanced 
users so this was placed at level 3 of the font Feature Layer.   
 
The feature layer system imposes fewer unnatural restrictions on the user. The designer still 
decides with a group of similar features which are more advanced. However, designers do not 
choose which sets of dissimilar feature are more advanced nor do they force users to acquire all 
advanced features when they only want a specific set of advanced features.   
 
3 Progressing through Layers in our BlogEditor 
   
3.1 Starting at a Layer 1 
 
The first layer of our interface is the simplest and easiest layer to understand and use.  With this 
simple interface the user is able to do the most basic posting into their web-log.  There are no 
advanced features to distract a first time user from accomplishing the essential task.  
 

 
Figure 1 - The first use interface with no Feature Layers added 



Proceedings of 11th International Conference on Human-Computer Interaction, 
Volume 7, July 2005. 

 
Immediately, there are only the basic components of a web-log interface, a text entry area and a 
button to post the web-log entry.  There is a text entry area that accepts any kind of text the user 
wishes to enter and displays in a WYSWIG form.  Initially the text area is filled with the text “My 
first web-log entry” with which the user can replace or add to on their first post.  When the user 
pressed the “Post Entry” button to post their entry the application sends their text to be posted to 
the web-log. All additional features of the Blog-Editor are hidden at first use to make the basic 
functionality of this application clear. 
 
3.2 Adding Layers By Assessing Prior User Experience 
 
Adaptive user interfaces traditionally change in response to the experience the user has with only 
the existing application. Experience users may have with similar applications is ignored. For 
example, an adaptive user interface would treat a user with extensive experience with another 
word processor the same way they treat a user who has never used any kind of word processor.  
 
We propose changing the interface in response to the prior experience the user has with the task 
the application performs.   On first use of our application, the interface attempts to adapt to the 
users experience with the task the application performs as they have no experience yet together.  
The analysis of the users’ previous experience with the task the application performs gives the 
application clues towards what kind of experience the user has even though the experience isn’t 
with this application.   
 
For example, on first use, our Blog-Editor asks the user for their web-log site URL, username, and 
password.  With this account information the application accesses the users’ web-log through a 
standard XML-RPC (Winer, 2003) method and analyzes the users’ previous entries if any exist.  If 
the application finds image tags in the users previous web-log entries, the imaging interface layer 
will be added to the interface.  Likewise if other items are detected in the web-log entries, like 
text-styles or text-alignment the application adds those layers to the interface at first use.  If no 
entries are found the user is assumed to be a first-time web-logger and no automatic action is 
taking to add new layers to their interface. 
 



Proceedings of 11th International Conference on Human-Computer Interaction, 
Volume 7, July 2005. 

 
Figure 2 - Alternate Program Startup, right clicking image shows menu item for opening the Blog-
Editor with this image 
 
3.3 Adding Layers through Alternative Application Startup 
 
It can be difficult to judge when a user is ready for the addition of a new layer to the interface.  We 
propose taking clues from how the user starts the application.  For example, users may click on a 
document to launch an application. This document can be examined for clues to the features 
required by the user. 
 
Figure 3 shows an example of the dynamic menu for different image types like jpg, png or gif.  
The user has right-clicked on an image and the popup menu gives the option to “Blog This…”.  
The  “Blog This…” option can be placed on any type of file the application has registered to 
handle, our Blog-Editor registered images, source code, and links or text within the web browser.  
The popup menus give quick access to the Blog-Editor and acts as the launch context provider for 
the automatic discovery of the extra features the user desires in our application.   
 
When a user who has never used phot-handling features chooses to “Blog This...” on a photo, the 
application adds the image feature layer at the default basic level; this layer gives the user the 
ability to edit and add images inside the Blog-Editor. 
This technique adds new features only an application launch. This is good because users may 
complain that the interface appears too dynamic or uncontrolled if features are added during the 
runtime of the application. 
 



Proceedings of 11th International Conference on Human-Computer Interaction, 
Volume 7, July 2005. 

 
Figure 3 - Layers and Layer Level Preferences  
 
 
3.4 Switching Layers through Manual Control 
 
In our Blog-Editor, we also preserved a manual control for adding layers. At anytime, a user may 
select the “More Features” option and is taken to a preferences window where they can decide if 
they would like more features shown.  Each of the tabs in the preferences window represents a 
feature layer the user may wish to change.  Each tab also has different levels within the Feature 
Layer, which the user can adjust by moving the slider up to gain more advanced features in that 
layer or down for less.   
 
Each of the changes made through the Preferences window are instantly applied to the interface 
the user can see the effect that adding a layer has.  The user can experiment with the different 
layers and levels of layers until they find what they are comfortable with.   Experienced users may 
find this the quickest way to go from the simplest interface to the more advanced interface.   
 
Because layers were chosen in the relative groups of features it has simplified the choice of adding 
layers in the Preferences dialog.  Previous attempts at providing the user with a manual method of 
changing layers gave a single slider bar with numbers assigned to each layer level.  We felt that 
the single slider approach didn’t give enough indication of what features would be present at each 
layer.  Instead, each level of a Feature Layer has a number attached to it but is described by the 
additional features that come with that level so the user knows what changes will take place with 
the new level. 
 



Proceedings of 11th International Conference on Human-Computer Interaction, 
Volume 7, July 2005. 

4 Conclusions 
 
In this paper we have designed and implemented an example Multi-Layer User Interface to 
encourage the adoption of this technique.  Our implementation details new design concepts of a 
Multi-Layer User Interface while also demonstrating our methods for deciding when to switch 
layers. 
 
By defining Feature Layers and Mixed Layers in Multi-Layer Interfaces, we have shown a better 
way to organize Multi-Layer User Interfaces into a finer grained layer approach.  With our Blog-
Editor we explored several systems for deciding when to add new layers to the users interface.   
 
Analyzing the users’ previous use of a similar application allowed our interface to determine the 
users’ experience even though the experience wasn’t with our application.  Explicit interactions 
such as alternative application startup gave our system the ability to add new layers to the interface 
based on how the user launched the application.  While automatic methods of adding layers to the 
interface can improve adaptability of the application we continue to provide a manual adjustment 
interface accessible at anytime.   
 
References 
 
Ceaparu, I., Lazar, J., Bessiere, K.,  Robinson, J., & B. Shneiderman. (2004). Determining causes 
and severity of end-user frustration. International Journal of Human-Computer Interaction, 2004. 
 
Clark, B. (2004).  PyBlog. Retrieved May 1, 2004, from  
http://www.clarkson.edu/~clarkbw/thesis. 
 
Kang, H., Plaisant, C., & Shneiderman, B. (2003). New approaches to help users get started with 
visual interfaces: Multi-layered interfaces and Integrated Initial Guidance. Proc. of the Digital 
Government Research Conference, Boston, MA, May 2003. 
 
Kraut, R., Scherlis, W., Mukhopadhyay, T., Manning, J., & Kiesler, S. (1996).  The HomeNet 
field trial of residential Internet services. Communications of the ACM , 39 (12) 55–63. 
 
Langley, P. & Fehling, M. (1998). The experimental study of adaptive user interfaces. Technical 
Report 98-3, Institute for the Study of Learning and Expertise, Palo Alto, CA, 1998. 
 
Shneiderman, B. (2003). Promoting universal usability with multi-layer interface design, ACM 
Conference on Universal Usability, Vancouver, British Columbia, Canada, November 2003. 
 
Wentworth, D. (2003). Definition of a weblog. Retrieved February 1, 2003, from  
http://blogs.law.harvard.edu/about#whatIsAWeblog. 
 
Winer, D. (2003). RFC: MetaWeblog API, Retrieved Auguest 1, 2003 from  
http://www.xmlrpc.com/discuss/msgReader$2198?mode=topic. 


