
Performance Isolation of a Misbehaving Virtual Machine with

Xen, VMware and Solaris Containers

Todd Deshane, Demetrios Dimatos, Gary Hamilton, Madhujith Hapuarachchi, Wenjin Hu,

Michael McCabe, Jeanna Neefe Matthews

Clarkson University

{deshantm, dimatosd, hamiltgr, hapuarmg , huwj, mccabemt, jnm}@clarkson.edu

Abstract

In recent years, there have been a number of papers comparing the performance of different virtualization environ-

ments for x86 such as Xen, VMware and UML. These comparisons have focused on quantifying the overhead of

virtualization for one VM compared to a base OS. In addition, researchers have examined the performance degrada-

tion experienced when multiple VMs are running the same workload. This is an especially relevant metric when

determining a systems’ suitability for supporting commercial hosting environments – the target environment for some

virtualization systems. In such an environment, a provider may allow multiple customers to administer virtual ma-

chines on the same physical host. It is natural for these customers to want a certain guaranteed level of performance

regardless of the actions taken by other VMs on the same physical host. In that light, another key aspect of the com-

parison between virtualization environments has received less attention - how well do different virtualization systems

protect VMs from misbehavior or resource hogging on other VMs? In this paper, we present the results of running a

variety of different misbehaving applications under three different virtualization environments VMware, Xen, and

Solaris containers. These are each examples of a larger class of virtualization techniques namely full virtualization,

paravirtualization and generic operating systems with additional isolation layers. To test the isolation properties of

these systems, we run six different stress tests - a fork bomb, a test that consumes a large amount of memory, a CPU

intensive test, a test that runs 10 threads of IOzone and two tests that send and receive a large amount of network I/O.

Overall, we find that VMware protects the well-behaved virtual machines under all stress tests, but sometimes shows

a greater performance degradation for the misbehaving VM. Xen protects the well-behaved virtual machines for all

stress tests except the disk I/O intensive one. For Solaris containers, the well-behaved VMs suffer the same fate as

the misbehaving one for all tests.

1. Introduction

Virtualization environments can be used for many dif-

ferent purposes. For example, virtualization can be used

to maintain multiple software environments on the same

host for testing or simply to allow a desktop user to run

multiple operating systems on the same physical host.

Virtualization environments have long been used in

commercial server environments on platforms such as

IBM’s VM/370 [1] or zOS. Increasingly, virtualization

environments for x86 platforms are targeting commer-

cial server environments as well. [2, 3] In such an envi-

ronment, a provider may allow multiple customers to

administer virtual machines on the same physical host.

In recent years, there have been a number of papers

comparing the performance of different virtualization

environments for x86 such as Xen, VMware and UML

[4] [5] [6]. These comparisons have focused on quanti-

fying the overhead of virtualization for one VM com-

pared to a base OS. In addition, researchers have exam-

ined the performance degradation experienced when

multiple VMs are running the same workload. This is

an especially relevant metric when determining a sys-

tems’ suitability for supporting commercial hosting en-

vironments. However, in a commercial hosting envi-

ronment, there is another important aspect to the com-

parison – how well do different virtualization

environments protect or isolate one virtual machine

from another? Running in parallel with other web server

VMs is quite different than running in parallel with a

fork bomb or other resource hogs. Knowing the per-

formance degradation in each case is important for both

providers and customers of commercial hosting ser-

vices.

In this paper, we examine three virtualization environ-

ments – Xen, VMware and Solaris containers. On each,

we host 4 web servers – each in their own virtual ma-

chine. After establishing some baseline data, we run a

variety of different stress tests in one of the four virtual

machines and report the impact on SPECweb perform-

ance in all four virtual machines. In each case, we ask –

what was the impact on the misbehaving VM and what

was the impact on the other three well-behaved VMs.

From this we determine how well the system isolated

the virtual machines from each other.

In particular, we run a memory intensive test, a fork

bomb, a CPU intensive test, a disk intensive test and

two network intensive tests. We find that the answer to

these questions varies significantly with the type of

stress test. We also find that the results seem to high-

light the difference between full virtualization systems

like VMware, paravirtualization systems like Xen, and

general purpose operating systems that are retrofitted to

support namespace and resource isolation like Solaris

containers. Mark Fiuczynski from Princeton has called

the latter paenevirtualization systems (paene is Latin for

nearly) [7].

Each of these environments could implement a high

degree of resource isolation. There is nothing prevent-

ing strong resource isolation in any of these environ-

ments. However, one might naturally expect the full

virtualization system to have the highest degree of re-

source isolation followed by paravirtualization systems

followed by paenevirtualization systems. Our results do

generally validate this expectation. VMware completely

protects the well-behaved VMs for all of our stress

tests. With Xen, the well-behaved VMs suffer a signifi-

cant impact only for the disk intensive test. However,

there is a slight but repeatable degradation on other

tests. With Solaris containers, the well-behaved con-

tainers shared the fate of the misbehaving containers in

all cases.

2. Baseline Data

Before beginning our stress testing, we established

some baseline data. Specifically, we ran SPECweb 2005

with 4 web servers each in their virtual machine. The

server VMs were all hosted on a single IBM ThinkCen-

tre with Pentium 4 processor, 1 GB of memory and a

gigabit Ethernet card. We used three different virtual-

ization environments - Xen 3.0 stable, VMware Work-

station 5.5 and Open Solaris 10. With Xen and

VMware, we used the same Linux server image with

Linux (2.6.12 kernel) running Apache 2. For Solaris,

each Solaris container was running Apache 2. In both

Xen and VMware, we assigned each virtual machine

128 MB of memory.

In our SPECweb tests, the clients were also IBM Think-

centres. We used a different physical client to connect

to each server virtual machine. Unless otherwise noted,

all of our physical clients presented a load of 5 simu-

lated clients.

At this load, all four web server instances provided

100% good response time as reported by the SPECweb

clients over 3 iterations. These baseline numbers illus-

trate that the machine is well configured to handle the

SPECweb requests. In other words, we are not taxing

the system with this load and any degradation in per-

formance seen in the stress tests can be contributed to

the stress test itself.

3. Stress Tests

After completing the baseline measurements, we ran a

series of tests that stress a variety of system sources

including memory, process creation, CPU, disk I/O and

network I/O. In these tests, we started web servers in all

four virtual machines, as in the baseline tests, and then

in addition ran the stress test in one of the server virtual

machines.

3.1. Memory Consumption

We began with a stress test which simply loops con-

stantly allocating and touching memory. After this test,

none of the Solaris containers presented any results. It

effectively shuts down all servers in the machine. In the

Xen case, the misbehaving VM did not report results,

but all others continued to report nearly 100% good

results as before. In the VMware case, the misbehaving

VM survived to report significantly degraded perform-

ance (8.6% good responses overall) and the other three

servers continued to report 100% good response time,

as in the baseline.

3.2. Fork Bomb

We also ran a program that loops, creating new child

processes. As in the memory consumption test, under

both Xen and VMware, the misbehaving virtual ma-

chine presented no results. For both Xen and VMware,

the other three well-behaved containers continued to

report 100% (or near 100%) good response time.

For Solaris, we tested in two configurations – with the

default container setup and then again with an option we

found that was described as avoiding problems with

fork bombs in containers.
1
In the first case, results were

1
 As part of our experiments with Solaris containers, we explored

various configuration options [13]. In the official Solaris documenta-

tion, we saw reference to both deny and none options for resource

control values. [14] With the deny option in place, we were unable to

not reported for any of the four containers. In the sec-

ond case, results were reported, but the good response

rate averages 10% across all four containers with the

misbehaving container actually showing the best results

with 12% good response.

3.3. CPU Intensive Test

Our third test stressed CPU usage with a tight loop con-

taining both integer and floating point operations. All

three of our virtualization systems performed well on

this test – even the misbehaving VMs. We verified on

all platforms that the CPU load on the misbehaving

server does rise to nearly 100%.

We suspect that the normal OS CPU scheduling algo-

rithms are already sufficient to allow the web server

sufficient CPU time. We wondered what would happen

if we changed either the underlying OS and/or the guest

OS. Towards this end we tried an additional experi-

ment. We ran the same test on VMware running on

Windows with the same Linux server images. In this

case, performance was still excellent – 100% good per-

formance on the normal VMs and 99% good in the mis-

behaving VM. It is interesting to note the slight, yet

repeatable degradation is due to the change of CPU

scheduling policy in the underlying OS from Linux to

Windows.

3.4. Disk Intensive Test

For a disk intensive stress test, we chose not to write our

own, but rather to use IOzone [9]. Specifically, we ran

10 threads of IOzone each running an alternating read

and write pattern (iozone -i0 -i1 -r 4 -s 100M -t 10 -Rb).

The results of this test were quite interesting.

For Solaris, as we’ve seen in other cases, the impact

was similar on all four containers, but the performance

degradation was minor but repeatable (1-2%).

On VMware, 100% good performance as maintained on

the three well-behaved VMs. However, the misbehaving

VM saw a degradation of 40%.

boot the container and we subsequently found on various Solaris user

groups that the deny option is not currently supported [11]. We did

try the none option and somewhat to our surprise found that it

showed a beneficial effect. Without the none option, a fork bomb
would render the entire system unresponsive to even the keyboard,

but with the none option we were able to Control-C the fork bomb

and regain control. We posted asking if there was any better way to

configure the container, but received no answer.

On, Xen, the situation was mixed. The misbehaving VM

saw a degradation of 12% and the other three VMs were

also impacted, showing an average degradation of 1-

2%. With Xen’s proposed hardware access model, a

specialized device driver VM could be written to ensure

quality of service guarantees for each client VM [10]

3.5. Network I/O Intensive Test

Our last set of stress tests involved a high level of net-

work I/O. We examined both server transmitting and

server receiving. For both sets of tests, we used other

machines (not the SPECweb servers or clients) as the

source or sink of the data.

3.5.1. Server Transmits Data

For the server transmitting test, we started 4 threads

which each constantly sent 60K sized packets over UDP

to external receivers. For this test, the results were once

again mixed.

All four Solaris containers showed degradations of

about 4%. Under VMware, the well-behaved VMs con-

tinue to show 100% good response, but the misbehaving

VM shows substantial degradation of 53%. For Xen, the

well-behaved VMs show almost no degradation and the

misbehaving VMs shows a slight but repeatable degra-

dation of less than 1%.

3.5.2. Server Receives Data

Finally, for the server transmitting test, we started 4

threads which each constantly read 60K packets over

UDP from external receivers.

The results for this test were similar to the server trans-

mit test on both Xen and Solaris. On Solaris, all four

containers were impacted and the average degradation

was about 2%. For Xen, there was a slight but repeat-

able degradation the misbehaving VM, but all the well-

behaving VMs were unaffected.

For VMware, all four VMs retained 100% good re-

sponse. We did not see the substantial degradation on

the misbehaving VM that we saw in the sender transmit

case. We suspect that in the face of network contention

that the incoming packets are simply dropped before

they impact any of the four web servers.

3.6 Summary of Results

We collect our results in Table 1. For each test, we re-

port the percent degradation in good response rate for

both the misbehaving or bad VM and the average for

the three well-behaving or good VMs.

From the first column, it is clear that VMware com-

pletely protects the well-behaved VMs under all stress

tests. Its performance is sometimes substantially lower

for the misbehaving VM, but in a commercial hosting

environment this would be exactly the right tradeoff to

make.

Xen also protects the well-behaved VMs relatively well.

The average degradation for the disk intensive case is

the worst at 1.37%. One thing that this table highlights,

however, is a slight but consistent degradation on most

tests.

Solaris does not isolate well-behaved containers from

misbehaving containers. For all tests, the well-behaved

containers share the fate of the misbehaving one. This

would be bad news indeed in a commercial hosting en-

vironment in which different customers are sharing the

resources of a single physical host.

Solaris containers do have advantages that appear in

other situations, like ease of creating a new VM and the

ability to create more containers than would be possible

with Xen or VMware (up to 8192) on the same system.

However, this may in part lead to the resource isolation

problem. If resources are committed when a VM is cre-

ated, it is easier to guarantee those resources despite the

actions of others. However, committing resources at

creation time also limits the number of VMs that can be

created. In an environment where all containers are un-

der the same administrative control, this may be a rea-

sonable trade-off.

4. Conclusions

Strong resource isolation could be implemented in any

one of the systems we have studied, but in many ways it

is a hard problem. It means extending resource schedul-

ing and the idea of fairness to all resources: disk, net-

work (incoming and outgoing), memory, CPU, etc.

While any of these three models could provide the nec-

essary resource isolation, it may be more difficult to

retrofit it into a general purpose OS that in a clearly

defined virtualization layers. Solaris, for example, is

working on adding more resource control into its con-

tainer environment [11] and has provided APIs for the

eventual controls, but it appears that users have been

looking for these additions for at least a year. In addi-

tion, it appears that there has been work on similar

technologies such as Sun’s Dynamic System Domains

since 1996[12].

 VMware Xen Solaris

 Good Bad Good Bad Good Bad

Memory 0 91.30 0.03 DNR DNR DNR

Fork 0 DNR 0.04 DNR 90.03 87.80

CPU 0 0 0 0.03 0 0

Disk

Intensive
0 39.80 1.37 11.53 1.48 1.23

Network

Server

Transmits

0 52.9 0.01 0.33 4.00 3.53

Network

Server

Receives

0 0 0.03 0.10 1.24 1.67

Table 1: Summary of Stress Test Results Percent of degradation in good response rate. For each test, the percent

degradation for both the bad or misbehaving VM is shown, as well as, the average degradation across the three good

or well-behaving VMs. DNR indicates the SPECweb client reported only an error and no actual results because of the

unresponsiveness of the server it was testing.

For now, many people are looking at virtualization en-

vironments and deciding which ones to use for different

applications. The issue of isolation from misbehaving

VMs is an important one to consider, especially for a

commercial hosting environment, and we hope this data

will provide some guidance in this area.

5. References

[1] R. Creasy IBM Journal of Research and Develop-

ment. Vol. 25, Number 5. Page 483. Published 1981.

The Origin of the VM/370 Time-Sharing System.

 [2] K. Fraser, S. Hand, T. Harris, I. Leslie, and I. Pratt.

The Xenoserver Computing Infrastructure. Technical

Report UCAM-CL-TR-552, University ofCambridge,

Computer Laboratory, Jan. 2003.

[3] S. Hand, T. Harris, E. Kotsovinos, and I. Pratt.

Controlling the XenoServer Open Platform, April 2003.

 [4] A. Whitaker, M. Shaw, S. Gribble. Scale and Per-

formance in the Denali Isolation Kernel. In Proceedings

of the 5th Symposium on Operating Systems Design

and Implementation (OSDI 2002), ACM Operating

Systems Review, Winter 2002 Special Issue, pages 195-

210, Boston, MA, USA, December 2002.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.

Harris, A. Ho, R. Neugebauer, I. Pratt and A. Warfield.

Xen and the Art of Virtualization. Proceedings of the

19th ACM symposium on Operating Systems Princi-

ples, pp 164-177, Bolton Landing, NY, USA, 2003

[6] B. Clark, T. Deshane, E. Dow, S. Evanchik, M.

Finlayson, J. Herne and J. Matthews. Xen and the Art of

Repeated Research. Proceedings of the USENIX 2004

Annual Technical Conference, FREENIX Track, pp.

135-144, June 2004.

[7] S. Soltesz, M. Fiuczynski, L. Peterson, M. McCabe,

J. Matthews. Virtual Doppelg(anger: On the Perform-

ance, Isolation, and Scalability of Para- and Paene- Vir-

tualized Systems. Submitted to Eurosys 2006.

[8] SPECweb 2005, http://www.spec.org/web2005,

accessed January 2005.

 [9] IOzone 3.257, http://www.iozone.org, Accessed

January 2006.

[10] K.Fraser, S.Hand, R. Neugebauer, I. Pratt, A. War-

field, and M. Williamson. Safe Hardware Access with

the Xen Virtual Machine Monitor, 2004.

[11] Solaris Forums. Zoneadm- Why not action=deny in

rctl?.URL

http://forum.sun.com/thread.jspa?threadID=21712&tsta

rt=0, Accessed January 2006.

[12] Sun Microsystems. Solaris Containers – Server

Virtualization and Manageability, p. 5, September

2004.

[13] P.Galvin. Solaris 10 Containers, USENIX login,

pp.11-14, October 2005.

[14] Sun Microsystems. Configuring Resource Controls

and Attributes, URL

http://docs.sun.com/app/docs/doc/817-

1592/6mhahuoiq?l=en&a=view, Accessed January

2006.

