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Abstract—The Blackhole Exploit Kit (BEK) has been called
the “Toyota Camry” of exploit kits - cheap, readily available
and reliable. According to some estimates, it was used to enable
the majority of malware infections in 2012. One major infection
vector for BEK is through Twitter. In this paper, we analyze
over two months of Twitter data from May through July of
2012 and identify user accounts affected by BEK. Based on
reports that BEK infected tweets containing the string ”It’s you
on photo?” were being used to lure victims to BEK infected sites,
we identified matching messages and analyzed the associated
accounts. We then identified a wider range of message types
associated with BEK infection and developed an automated
mechanism for identifying infectious accounts - both accounts that
were created specifically for malware distribution and legitimate
accounts that began distributing malware after the owner’s
system was infected. Specifically, we find that BEK infectious
accounts are characterized by tweets with an entropy lower than
4.5, tweets that are sent using the Mobile Web API and tweets
containing an embedded URL. We present an automated method
for isolating the point at which an account becomes infectious
based on changes in the entropy of tweets from the account.

I. INTRODUCTION AND BACKGROUND

The Blackhole Exploit Kit (BEK) is a web-based applica-
tion that manages the installation, command, and control of
malware. It works by utilizing a compromised server to which
victims are directed by means of various infection vectors [1].
Links luring victims to a compromised server are typically
distributed through spam email messages, spear-phishing or
links in social network posts. The compromised exploit server
hosts an innocuous looking webpage that contains a tool for
scanning the visiting system’s vulnerabilities [7]. When the
victim clicks on a link spread through any infection vector,
this tool runs on the victim’s system.

Once the tool identifies vulnerabilities, BEK automatically
loads the necessary exploit tools and then compromises the
victim’s system. BEK can be used to install a wide variety
of malware tool-sets [2] [3] depending on the exact mission
of the attacker. BEK contains modular capabilities that allow
new exploits to be added rapidly and in many languages. BEK
employs countermeasures such as packing of its malware pay-
loads, binary obfuscation and antivirus avoidance capabilities.

According to some estimates, BEK was used to enable
the majority of malware infections in 2012 [39]. One study
found that BEK accounted for 29% of all malicious URLS in

a dataset consisting of 77,000 URLs marked harmful by the
Google Safe Browsing API [7].

In early 2012, the creators of BEK released version 2.0 and
with this release, it became one of the most well known and
most commonly deployed exploit kits in existence [4] [5] [8].
Version 2.0 was a complete rewrite of the toolkit and included
various improvements, such as new techniques for antivirus
detection avoidance, multiple operating system support, and
better command and control capabilities.

With past versions of BEK, victims were required
to visit a webpage with the naming convention proto-
col infection server.TLD(letter).php, where “letter” was any
English lowercase alphabetical character. This naming con-
vention was suspicious to many potential victims and as such
was dropped in version 2.0 [6]. BEK 2.0 allows attackers to
specify custom created URLs based on either a hard-coded
schema or one which includes variables. These dynamically
created URL’s can be made so that they are only valid for a
short period of time or even limited to the duration of a single
client session. With these changes, defenses based on URL
blacklisting techniques become ineffective against BEK.

BEK continues to be prevalent and feature rich due to both
its modular design and the consistent level of maintenance
given by it creators. The level of effort provided by the creators
is fueled by the Malware as a Service (MaaS) economic model
[12]. BEK is optimized to deliver its intended results for a
paying attacker. The Blackhole Exploit Kit 2.0 regularly sells
annual licenses for $1500 US dollars, with the option of renting
the kit for $50 a day [7]. It is believed by many that BEK
was created by a Russian criminal group [9]. Though some
speculate that it may be only heavily used by this group, but
not specifically created by them [10].

BEK includes countermeasures against many common
forms of defense, including:

(1) Email Spam Filters Email spam filters rely on known
spam message structure, key words, and URLs to detect
suspicious messages [13]. BEK overcomes this by duplicating
legitimate email messages which were captured from real
compromised accounts. In addition, URLs point to one of
many thousands of compromised web servers including those
running on legitimate hosting services. At one point, a single
day’s campaign launched by an attacker using BEK, utilized



1960 URLs pointing to 291 infected web servers [1] [11].

(2) User Education Educating users to identify BEK
messages requires that the user be able to detect suspicious
messages via visual inspection of link addresses or message
content/grammar. This is typically effective only when a mes-
sage is automatically generated. In the case of BEK, messages
were cloned from legitimate ones.

(3) Reputation systems Ranking systems deployed by
Twitter, Google and others rely on links being active long
enough to be classified. BEK URLs have a limited time to live
and may not get scanned before being automatically disabled.
In addition, BEK landing pages employ various JavaScript
obfuscation techniques to better hide their capabilities. Docu-
mentation that accompanies BEK lists the following feature:

“Implemented maximum protection from Automatic
systems for downloading exploits, used by AV com-
panies: generate a dynamic URL, which is valid for
a few seconds, you need only to [lure] one victim at
a time [11].”

In this work our focus is on the BEK infection vector itself
rather than on the final installed malware payload. Specifically,
we analyze how BEK uses Twitter as an infection vector as it
is the most common infection vector used by BEK[6].

The rest of the paper is organized as follows: Section
II describes our dataset and how it was collected. Section
III discusses our analysis methods and several key metrics.
Section IV presents the evolution of and the results of the our
automated mechanism for the detection of infected accounts.
Section V compares this work to prior published works in the
area of Twitter as an infection vector and Section VI concludes.

II. DATASET CHARACTERISTICS AND DATA COLLECTION

Over the course of 2012, we collected multiple terabytes
of data from Twitter. Recently released estimates place total
Twitter traffic at 175 million tweets per day [15]. Comparing
the amount of data we collected daily to Twitter’s own reports
on traffic per day [15], we estimate that we collected between
50% and 80% of all Twitter traffic.

Our complete 2012 dataset consists of 147 Days of Twit-
ter data stored as 30 Terabytes of gzip compressed JSON
formatted data. A typical day’s compressed data can vary
significantly, but averages 70 GB.

For this analysis, we focused on the primary infection time
frame of May 3rd through July 7th of 2012, although we
collected substantially more data throughout 2012 and 2011.
This time frame includes the date where the first infectious
account was detected, through the point where more than
1000 accounts were affected. Our 2 month sample set consists
of 6,531,319,202 Tweets, with 265,163,290 unique accounts
represented.

When processing a stream of Twitter traffic, each tweet
contains both the 140 character message and a rich set of meta-
data describing the origin of the tweet. We captured complete
tweet data in JSON format using Twitter’s REST API. This
data includes a large number of additional fields other than the

message text, all of which can be taken into account during
analysis. This additional metadata, includes information about
the user, the users account, and potentially the users location at
the time of the tweet. Since Twitter is a social networking site,
connections between users can be gleamed from the included
post data, for example if the message is being retweeted or
sent directly to another user. Together, the message and its
associated metadata for each tweet averages 1.2 Kilobytes.

The tweet message and associated metadata is returned as
a JSON string containing key-value pairs. The fields or keys
of this JSON string are listed in Table I. Any of these items
could potentially be used as indicators of an infected account if
measured and compared properly. Aspart of our analysis, we
will discuss which items have the strongest correlation with
BEK infection.

TABLE I. TWITTER JSON KEY FIELDS

profile link color Coordinates
In reply to screen name Geo
In reply to status id text
In reply to status id str entities
In reply to user id place
profile background color contributors enabled
profile background title default profile
default profile image description
follow request sent followers count
friends count geo endabled
profile image url https listed count
profile background image url notifications
background image url https name
profile image url lang
sidebar border color use background image
sidebar fill color screen name
profile text color show all inline media
url utc offset
Created at Id
Favorited Id str
retweet count created at
favorites count following
id translator location
trunkated retweeted
Contributors protected
time zone statuses count
verified

When collecting this data set, we encountered and over-
came a number of interesting challenges. The foremost chal-
lenge was dealing with changes in the way that Twitter limits
the rate at which data can be gathered. We first began gathering
Twitter data in January 2011 at this time there were no specific
limits on the rate of data available. Twitter first introduced
limits to the API live stream in mid 2011 [22] in preparation
for licensing their feeds to GNIP, who could then re-sell them
at approximately $30,000 a month [21]. This change meant that
normal users/researchers could no longer access the Firehose
(ie. 10%) stream directly, and no one could be whitelisted for
the 30-40% stream.

After this change, researchers and other non-commercial
users still had access to the Spritzer service and the limited
streaming Twitter API. The Spritzer feed is approximately 1%



of all tweets happening in real time. The Streaming API limits
this further by allowing 350 requests to Twitter an hour, with
a response of no more then 200 tweets [23] [24] [25]. That’s a
total of 70,000 tweets an hour per application. An application
is denoted as any tool written and distributed to multiple users,
but using the same account credentials. Additionally, Twitter
imposes a cap of 20,000 tweet responses an hour for any single
IP address. Together, this limitation means that based on a
current reported rate of 175,000,000 tweets occurring daily,
the average application, user, IP combination receives no more
then 480,000 tweets daily (20,000 * 24 hours), or .27% of all
tweets.

Twitter uses a fairly simplistic method for sampling the
live stream [41] for the Spritzer Streaming API. Specifically,
it starts a counter for each new connection. This counter starts
at 1 and counts to 100 before starting over. The first tweet ”1”
is sampled and returned to the connecting client. After some
experimentation, we discovered that putting in a simple ”sleep
1” command between the start-up of two or more subscriber
scripts is enough to receive a completely different set of tweets
between the accounts. To prove this point, we initially created
5 Twitter Accounts and manually started the collection script
with each set of login credentials one after the other. After
running for 24 hours, these 5 Subscriber Script / Account
combinations collected 16,599,674 Unique Tweets. Following
this logic, we utilized 30 unique accounts for the collection
period to generate our sample dataset.

III. DATA ANALYSIS

A. Analysis Framework

Our data analysis system consists of a small cluster con-
sisting of 18 x 64 Bit Cores with 52 GB of RAM and 48
Terabytes of storage capacity. We distribute our dataset over
the cluster using DISCO Distributed File System (DDFS) [18].
DDFS is a non-traditional tag-based filesystem designed for
use with the DISCO Map Reduce system. DDFS builds on top
of a traditional Linux filesystems like ext4, adding horizontally
distributed scaling capabilities.

We store the compressed data in three external USB RAID
enclosures consisting of approximately 11 TB of storage each.
For analysis, we move portions of this data to an 18 TB RAID
array for processing.

We use the DISCO [17] framework for creating, maintain-
ing, and distributing jobs written in Python. The Twitter JSON
stream enters the system and is broken into chunks for each day
and then within each day, it is further broken into slices that are
limited to 64 MB in size. DDFS refers to chunks with the name
(blackhole:Date) and slices with the name (Date$SliceNumber)
where chunk number is the MD-5 checksum of the data in the
slice.

Key-value pairs are derived from the Twitter APIs JSON
structure as previously listed in Table I. Data feeding the
reduce phase is noted as (k{v, d, n..}) where k is the key
that we have worked on and v,d, and n are values, derived
values and number of occurrences, respectively. For each query
over the data set, we specify the makeup of the key based
on the fields available in the JSON structure. For example, if

we wanted a query to analyze the application that generated
the tweets, we might base the key on the source field of the
JSON data. An iPad user might generate tweets with a “source”
key that looked like: ¡a href=”http:twitter.com#downloadipad”
rel=”nofollow”¿Twitter for iPad¡a¿. This value tell us three
important things: the first is that the tweet was posted using the
official Twitter application, the second is that the application
was installed on an iPad, and the third is that when that
tweet was sent nofollow was enabled which means that search
engines will not use it to gauge popularity of a site. These two
items are what we refer to as derived values. Finally, we sort
data from all nodes on the cluster back on the master node
by passing the key-value group (k-vg) option to DISCO and
feeding it as a sorted list (k-vg)sorted(iter)), in which each key
has the cumulative sum of its values.

Disco treats each MapReduce job as a single entity and
does not run multiple jobs simultaneously. Since we have a
live data stream to process which requires multiple things to
happen simultaneously, we do the following: 1) We have a
MapReduce job that sorts the data by accounts. 2) The sorted
accounts are then written to the DDFS store based on account
name. This is similar to creating a new MySQL Table for each
username. 3) The data in the DDFS store is then processed for
characteristics like the entropy of the message, the API used,
etc. 4) A new DDFS entry (like a new row in MySQL) which
refers to the users account is created. 5) A count of the number
of BEK infectious messages for each account is updated in a
Python list.

B. Key Metrics

Two specific values we compute over our dataset using this
MapReduce framework are an Entropy value and Pearson’s
Correlation Coefficient. We will explain in more detail later in
the paper the significance of these metrics. In this section, we
simply describe how they are implemented in Python for use
with DDFS.

1) Entropy: We use entropy as a numerical signature
of a tweet’s message text. Entropy gives us the character
distribution of a message. It is a measure of uncertainty in
the random variable, character values [40]. Entropy is a fun-
damental information theory metric used in statistical Natural
Language Processing (NLP). Classical NLP requires the use of
machine learning classifiers which would be computationally
expensive for the size of the dataset we are using. We instead
use Shannon’s Entropy formula which calculates the minimum
number of bits needed to represent a piece of information, in
our case, the message data in each tweet. Without this, we
would have had to rely on regular expressions or a natural
language tokenization system to look for similarities across
text.

Shannon’s Entropy formula is given in Equation 1 where
n is the total number of characters in the a tweet message and
xi is the ith character. For each character, we take the log of
its base2 representation and multiple by its probability within
the tweet.

H(X) = −
n∑

i=1

p(xi)logbp(xi) (1)



H(X) represents the minimum number of bits needed to
encode a string. If we take Shannon’s Entropy of the string
“It’s you on photo?” we end up with an H(X) equal to 3.47135.
Since this is not a real number we round up to 4 bits. This
means that we require 4 bits to encode each ASCII symbol in
our string.

2) Pearsons Correlation Coefficient: Pearsons Correlation
Coefficient(PCC) or Pearsons Product-Moment Correlation
Coefficient allows the calculation of linear association strength
between two variables. In our case, the variables are keys from
our Twitter API JSON data such as text or url. PCC is simply
an attempt at drawing a line that best fits through the data a
graph of a two variable dataset. This is known as the r-value
which is shown in Equation 2.

ρX,Y =
cov(X,Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
(2)

ρX,Y is the Correlation Coefficient between X and Y. This
tells us that as the score of X increases or decreases, Y does
so at the same rate, either positively correlated or negatively
correlated. Values close to 0 indicate that the correlation -
either positive or negative - is a weak one.

IV. RESULTS

When analyzing our data set, we compare a baseline
of “clean” Twitter accounts to a set of infectious accounts.
To identify accounts affected with BEK, we started with
reports that BEK related messages had been found in Twitter
with the string It’s you on photo — It’s all about you?
[19] [20]. We manually examined a subset of the accounts
that generated messages matching this string and identified
additional message attributes common to these accounts. Based
on what we learned through manual inspection, we designed
a filter to automatically classify accounts as infectious and
apply this filter to the complete two-month data set. We
demonstrate the effectiveness of this filter by comparing the set
of accounts classified as clean to those classified as infectious.
The following subsections explain each of these steps in details
and give an overview of our findings.

A. Identification of ”Clean” Accounts for Comparison

We identified as set of “clean” Twitter accounts to which
we could compare our measurements of infectious accounts.
Accounts were selected using Python’s random.shuffle() and
random.sample() methods. Python’s random.shuffle() mixes
the population, while random.sample() returns a specified
number of items from a population stored in a list. We then
manually inspected the accounts to verify that they represented
non-advertising, non-infectious, normal user accounts for En-
glish speaking users.

We sampled 100 such accounts from our dataset, manually
verifying each for content. Our total clean sample set consisted
of 197,237 messages, all of which were stripped of any links,
hashtags “#” or directed entity names “@”. We removed
hashtags and entitynames because the variety of names used
by users of Twitter is so great that they skew the entropy

measurements. Some entities will use names as short as 3
initials, while others use an entire phrase. Measurements have
additionally shown that the sheer volume of URL redirection
and shortening services in existence, including Twitter’s own
.to service, prohibits the use of any sort of URL based
measurement.

The messages for each “clean” account were sampled using
the GetUserTimeline() API option to pull up to 2000 Messages
per account over the time period of May 1st to December 31st,
2012.

B. Initial Identification of Infectious Accounts

Our first pass at identifying infectious accounts was to pass
over all sample messages with a regular expression that looked
for the common message format of (@followername It’s you
on photo? url.ru/#followername.html) [19]. This format was
widely reported starting in July of 2012 and included a variant
message “It’s about you?.” The basic format was used to
generate the regular expression shown in Code Block 1.

Code Block 1. BEK Message Detection Regular Expression

i f re .match ( r ' ( . * )@( . * ) . ru / ( . * ) # ( . * ) h tml ( . * ) ' , text , re .M←↩
|re .I ) :

This returned over 1000 Matches from our overall dataset.
After manually inspecting 10 suspect accounts we found a
number of interesting, undocumented, BEK infectious message
attributes. First and foremost, the assertion that many security
related blogs made about message structure [19] [20] was
incomplete. Table II is a list of some additional message
variations we observed.

TABLE II. BEK INFECTIOUS MESSAGE VARIATIONS

You were nude at party) cool photo) It’s photo of you?
Amazing! your nude photo It’s all about you?
Wow! your photo is cool. It’s about you?
At party you was drunken) cool photo) It’s you on photo?
Your photo is amazing WOW! you look good)

In addition to the message variations shown in Table II
we found a number of other interesting characteristics. First,
BEK messages contained various abbreviations of words such
as ‘ur’ for “your”. Second, many messages did not include the
directed at “@” follower name. Third, the majority of links
used a URL shortening service, did not include the follower
name, or did not end with .html.

C. Comparing the Entropy of Clean and Infectious Accounts

In Figure 1, we show a graph of the entropy measurements
for messages sent from the ”clean” Twitter accounts we
identified earlier. This graph suggests that normal messages
from English speaking users on Twitter have a message entropy
between 4.5 and 7.5.

Figure 2 graphs the entropy for an account that posted
both infectious and clean messages intermixed over time.



Fig. 1. Plot of Baseline Clean Twitter Account Entropy

We set a group of messages with entropy in the normal
range of 4.5 to 7.5, but we also see a substantial group of
messages with entropy below 4.5. The outlying values with an
entropy near 0 are simply messages consisting of a directed
at username and/or URL with no actual textual content, but
all other datapoints with an entropy lower than 4.3 match the
characterization of BEK messages discussed above.

We examined a set of accounts with this mixed behavior
and find two patterns. In some cases, it appears that the
accounts have been hijacked, as such it consists of older clean
messages and newer infectious messages. In other cases, it
appears that the account was created specifically to be an
infection medium and includes both infectious messages, and
retweets of legitimate messages and/or copied messages from
other accounts. This simple method of account obfuscation,
mixing infectious messages with retweeted messages, hides the
true nature of the account from many methods of detection.

Fig. 2. Plot of Baseline Infectious Twitter Account Entropy Versus Time

Fig. 3. Plot of Text Field Entropy Correlation With Word Count for Sample
Infectious Twitter Account

D. Comparing the Pearsons Correlation Coefficient of Clean
and Infectious Accounts

We calculated the Pearsons Correlation Coefficient (PCC)
of both our ”clean” Twitter accounts and the accounts we have
identified as BEK infectious accounts. When comparing two
infectious sample accounts to each other, we have an average
PCC value of 0.927581013955. This positive value near +1
indicated a strong positive correlation or similarity between the
accounts. When comparing the infectious accounts to clean ac-
counts, we have an average PCC value of -0.0847935420003.
This negative value near 0 indicates that the accounts are
dissimilar. Figure 3 shows a correlation plot of the accounts
we have identified as infectious.

E. Use of the Mobile API

We also searched the contents of the JSON tweet structure
for metadata fields that were correlated with BEK infection.
We find that 76.7% of all traffic from BEK infectious accounts
uses the Mobile Web API to send messages. In addition we
find that non-BEK infectious accounts had a 68.6% usage of
the standard Twitter Web API.

Figure 4 shows a comparison of source application usage
between BEK infectious and normal Twitter user accounts. For
this test, we took a sample of 100 BEK infectious user accounts
and 100 non-infectious user accounts. We then counted the
number of source applications used for each account. The
source application field in the Twitter API returns a value
which specifies the name or type of application that was used
to generate the tweet. Our analysis found a number of different
applications which we separate into four (4) groups: 1) Mobile
Web, 2) Web, 3) iPhone, 4) Other. Note the substantially higher
use of the Mobile API by the BEK infectious accounts.

We suspect that BEK uses the Mobile Web API because it
is substantially simpler to use than the normal Web Twitter
API. APIs like the Web or iPhone versions require Oauth
authentication. This requires registration of the application



Fig. 4. Source Application Percentage, Infectious Versus Non-Infectious
Accounts

with Twitter to obtain cryptographic keys. In addition, the
Mobile Web API requires substantially less code to implement.

We searched for other indicators of BEK infection in the
JSON metadata, but found no other correlation of message or
metadata values. For example, geographic indicators such as
latitude and longitude, location tags, and time zones do have
a correlation with BEK infection.

F. Summary of Infectious Indicators

We make the following statement about BEK infectious
accounts. BEK accounts can be effectively detected by looking
for accounts where:

• a percentage of there tweets have an entropy lower
than 4.5

• messages that have entropy’s lower than 4.5 were sent
from the Mobile Web API

• tweets have a URL embedded in them

We use a filter based on these indicators both to identify
infectious accounts and to identify the point at which an
account becomes infectious. Identifying the point of infection
requires access to samples of the account timeline before it
became infected so that we can observe the change. Real-time
identification of accounts as they become infectious could be
quite beneficial for stopping the spread of infections in Twitter.

During our sample analysis of infectious accounts, we
came across two accounts which had always been infectious
from the time they were created until the time when we
sampled them. In other words, our data set includes the
creation of these accounts and messages sent from that time
forward. These accounts displayed the same characteristics as
an account that had only become infectious over time, such as
use of the Mobile Web API and message entropy values lower
than 4.5.

G. Totals

We processed our entire dataset again with a filter based
on the infectious indicators described previously. and Table III
summarizes our findings.

TABLE III. SUMMARY OF RESULTS

Total Tweets Processed 6,531,319,202
Total Number of Unique Accounts 265,163,290

Number of Suspicious Accounts 729,609
Total Number of Suspicious Tweets 8,286,480
Calculated Percentage of Infectious Accounts 0.275%
Calculated Percentage of Infectious Tweets 12.7%

The overall percentage of BEK infectious accounts is rela-
tively low overall compared to our dataset. However, 729,609
infectious accounts is still a strikingly large absolute number.
BEK uses individually infectious twitter accounts to transmit
its messages, but does so by infecting a physical computer and
stealing the users Twitter credentials. This suggests that there
are potentially 729,609 BEK infected computer systems. We
believe this to be a conservative estimate of BEK infection.

We would like to be able to report a definitive false positive
rate for our detection mechanism. Calculating an absolute false
positive detection rate would require contacting each Twitter
account owner to verify whether they generated these messages
by hand and perhaps by running a detection program on their
computer to see if it is infected with BEK. In many cases,
this would be impossible due to the short lived nature of
the accounts. However, we are interested in trying to do this
manually for a few cases in the future.

Fig. 5. Clustered Analysis of Infected Accounts

We further visualize the 729,609 suspicious accounts in
Gephi [42] using the OpenOrd plugin [43] which show us



obvious clusters as shown in Figure 5. The linkage between
the core node of a cluster and others is representative of an
infection path where one user infects another. We classify
the second account as infected when it has sent messages
that conform to our filter. This graph does not include lines
representing infectious messages that an account sends when
there is no evidence of a resultant infection. The most densely
populated portions of the graph represent accounts that have
successfully spread their infection to others and as such can
be considered infection hubs.

V. RELATED WORK

There is no shortage of work relating to analysis of sites,
such as Twitter, to gauge the mood of a population and use
these measurements to predict external events, such as stock
market trends [26] [27] [28]. In addition, social networking
trends have been used as indicators of real world contagion
outbreaks, such as that discussed by Manuel Cebrian [29].
Cebrian built on the work of applications, such as Google’s
Flu prediction system, to include an understanding of the
relationships that occur in these networks of outbreaks. In this
work, he was able to conclude that location within the network
was crucial to the chance of infection. While we did not pursue
measurements of group centrality in this work, as relates to
BEK infectious account spread, this is an area we intend to
pursue in the future.

A few studies on the mechanism that BEK uses for
dropping malware onto a system have recently emerged, which
add to the various studies on driveby downloads. Grier et al. [7]
examined what they term the “the emergence of the exploit-as-
a-service.” This included a comprehensive analysis of 77,000
URL’s and over 10,000 unique binaries. Their findings showed
that BEK accounts, in conjunction with the Phoenix Exploit
Kit, accounted for around 47% of all pages serving exploits.
We found the URL patterns identified in their work, ie:
”w.php?f=(.*?)&e=(.*?)” to not be all inclusive, based on our
analysis.

In addition, the work of Rajab et al. [30] presented the
results of 240 million pages over a year long period, in which
they studied malware which masquerades as fake antivirus
software. This is a popular method that BEK employs post
link visitation from Twitter [33] [34]. Another study, Li et al.
[8] presented a study of malicious web advertising, penned
malvertising. This work found more than 1% of 90,000 well
maintained pages had been exploited and were serving up
driveby downloads, malicious links, and various click-jacking
based threats.

We have seen various approaches involving the direct
analysis of social media networks, specifically Twitter, for
malicious content, such as spam and bots. Chu et al. [31]
presented an approach to determining if an account was being
run by a Human, Bot, or Cyborg based on various factors such
as an entropy component which looks for periodic or regular
timing of posts. Our work takes a similar approach to theirs
in that we look at various account properties. In contrast to
their work, we chose not to employ Google’s Safe Browsing
API [32] to check URL’s because this component does not
work for live analysis; the GSB is only updated when Google
detects or gets a report of a malicious URL.

Along the same lines as Chu et al., other research has
focused on the identification of automated users such as that
by Zhang et al. [37]. They presented a method for the detection
of automated behavior in a Twitter account. They showed that
not only do 16% of Twitter accounts show signs of automation,
but also only a relatively low number of tweets use the Mobile
Web API for posting.

Moore et al. [36] presented the results of a investigation
of search term trending abuse. They used top search engine
search term results and compared them to Twitter top results.
Their study dataset was gathered over a 9 month period and
resulted in heuristics for the identification of advertisement
sites. They provided statistics on the prevalence of these sites,
and measured how seach engines, such as Google, detection
and blocking attempts have affected trending term abuse. The
authors presented a very informative analysis of CDF (Cumu-
lative Distribution Function) versus MFA (Made For AdSense)
domains. These MFA’s directly correlate to top Twitter search
term results. The same type of external correlation may be
possible between social networks.

Unlike these papers, we focus on the potential to build an
automated system which does not rely on any external API’s
besides the Twitter data feed itself in order determine if a
specific Twitter account is infectious. We believe that this work
can be applied to various other social networking sites with
some modification. In the future, we would like to include
results from Han et al. [35] on the normalization of social
media text. If used, this could potentially solve some problems
involving message variation.

VI. CONCLUSION

We have completed a large-scale analysis of the character-
istics of Twitter accounts being used as Blackhole Exploit Kit
infection vectors. In some cases, these accounts appear to have
been setup for the sole purpose of malware distribution, but
more often are simply accounts which have been taken over
after infection.

We found that there is substantial variation in message
structure when attempting to use simple regular expressions
to identify infectious messages. We identify a larger range of
message types associated with BEK than we see discussed in
other published analysis of BEK [19] [20].

We have identified the aspects of individual tweets that
correlate most strongly with BEK. We have used these mea-
surements to construct a filter based on message entropy,
the Tweet source (Mobile Web API) and the presence of an
embedded URL. Using this method, we identify over 700,000
infectious accounts which have generated upwards of 8 million
infectious messages.

We have discussed the integration of measurement tech-
niques into a our large scale social network analytic platform
as part of a series of MapReduce functions.

There are likely many more threats within our dataset, and
assuredly more on Twitter as a whole. We will continue to
develop our platform adding filters and capabilities until it is
capable of real time analysis of a wide variety of events and
threats.
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