
Improving File System Performance With Adpative Methods

by

Jeanna Neefe Matthews

B.S. (Ohio State University) 1994

M.S. (University of California at Berkeley) 1997

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Commitee in charge:

Professor Thomas E. Anderson, Co-Chair

Professor Joseph. M. Hellerstein, Co-Chair

Professor David A. Patterson

Professor Alice M. Agogino

Fall 1999

The dissertation of Jeanna Neefe Mattthews is approved:

__

Co-Chair Date

__

Co-Chair Date

__

 Date

__

 Date

University of California, Berkeley

Fall 1999

Improving File System Performance With Adaptive Methods

Copyright 1999

by

Jeanna Neefe Matthews

All rights reserved

1

Abstract

Improving File System Performance With Adaptive Methods

by

Jeanna Neefe Matthews

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Thomas E. Anderson, Co-Chair

Professor Joseph M. Hellerstein, Co-Chair

My thesis is that the systematic application of simple adaptive methods to file system design

can produce systems that are significantly more robust to changing hardware and diverse work-

loads than existing systems. I present modifications to the log-structured file system that allow it to

provide robust write performance in a wide range of environments. I also present a dynamic reor-

ganization algorithm that makes disk layout responsive to read patterns. I evaluate these adaptive

algorithms with trace driven simulation on a combination of synthetic and measured traces. I find

that simple adaptive algorithms can dramatically improve worst case performance and can allow

average case performance to scale with improvements in disk technology.

__

__

iii

Table Of Contents

CHAPTER 1. Introduction..1

1 .1. Motivation..1

1 .2. Adaptive Methods..5

1 .3. Adaptive Methods In File System Design..6

1 .4. Contributions of this Dissertation...8

1 .5. Organization of the Dissertation...11

CHAPTER 2. Technology Trends..12

2 .1. Overview..12

2 .2. Trends in Storage Technology..14

2.2.1 Internal Structure of a Disk Drive..14

2.2.2 Improvements In Aerial Density..15

2.2.3 Improvements In Access Time...18

2.2.4 Disk Arrays..22

2.2.5 Storage System Interfaces..23

2 .3. Trends in Processor Performance...24

2 .4. Trends In Memory Technology..26

2 .5. Conclusions..28

iv

CHAPTER 3. A Brief History of File Systems...................................29

3 .1. What is a File System?...29

3 .2. Early File Systems..32

3 .3. The Fast File System..34

3 .4. Write-ahead Logging File Systems..36

3 .5. The Log-structured File System...37

3 .6. Write-Anywhere File Systems...41

3 .7. The Effect of Caching and Prefetching..43

3 .8. Conclusions..45

CHAPTER 4. Workload Characteristics Affecting File System
Performance...46

4 .1. Characteristics of Several Important Workloads..............................47

4 .2. Workload Characteristics...50

4.2.1 Write patterns...50

4.2.1.1 Order of Write Accesses...................................50

4.2.1.2 Temporal Locality of Write Accesses................51

4.2.2 Read Patterns..52

4.2.2.1 Order of Read Accesses.....................................52

4.2.2.2 Locality of Read Accesses.................................52

4.2.3 Mixture of Reads and Writes..52

4.2.3.1 Ratio of Reads and Writes...................................52

v

4.2.3.2 Interleaving of Reads and Writes......................53

4.2.4 Rate of Data Access...53

4.2.5 Data Size and Distribution...54

4.2.6 Disk Utilization..54

4.2.7 Data Lifetime...55

4.2.8 Frequency of Data Commit..55

4.2.9 Availability Requirements...55

4 .3. Conclusions..56

CHAPTER 5. Providing Robust Write Performance In Log-Structured
File Systems...58

5 .1. Motivation...58

5 .2. Methodology..60

5.2.1 Traces...60

5.2.1.1 Synthetic Random Update Workload...............60

5.2.1.2 Auspex Trace..61

5.2.2 Simulation Environment..63

5.2.3 Performance Model...65

5 .3. Understanding Write Cost: The Effect of Segment Size..................67

5 .4. Adaptive Cleaning: Choosing the Best Garbage Collection
Mechanism Based on Usage Patterns...73

5.4.1 Comparing Traditional Cleaning With Hole-plugging.........73

vi

5.4.2 Adaptive Cleaning Policy...78

5 .5. Using Cached Data To Reduce Write Cost......................................82

5 .6. Putting It All Together..85

5 .7. Related Work..85

5 .8. Conclusions..86

CHAPTER 6. Providing Efficient File System Read Access..............87

6 .1. Motivation..87

6 .2. Methodology..88

6.2.1 Workloads..88

6.2.2 Simulation Environment..89

6 .3. The Read Performance of Existing File Systems.............................90

6.3.1 Sequential Write Followed By Sequential Read..................92

6.3.2 Random Write Followed By Sequential Read......................95

6.3.3 Writing and Reading the Same Non-Sequential Pattern.......97

6.3.4 Microbenchmark Summary..99

6 .4. Dynamic Reorganization..99

6.4.1 Identifying Related Data..99

6.4.2 Data Reorganization...100

6.4.3 Balancing Reads and Writes...102

6 .5. Performance of LFS With Dynamic Reorganization......................103

6.5.1 Microbenchmarks...103

vii

6.5.1.1 Adjusting to Observed Read Patterns...............103

6.5.1.2 The Effect of Disk Utilization..........................107

6.5.1.3 The Effect of Improving Disk Performance....109

6.5.2 Measured Traces..110

6.5.2.1 The Effect of a Long-term Trace....................110

6.5.2.2 The Effect of Changing Access Patterns.........112

6 .6. Related Work..115

6 .7. Conclusions..116

CHAPTER 7. Conclusions..118

7 .1. Summary..118

7 .2. Future Directions..119

7.2.1 Additional Simulation Experiments...................................119

7.2.2 Adaptive File System Implementation...............................121

7.2.3 Formal File System Models...122

7.2.4 File System Organization...122

7 .3. The Bigger Picture..123

7.3.1 Additional Benefits of Log-Structure.................................123

7.3.2 Adaptive Methods and Computer Systems of the Future...124

7 .4. Conclusion..125

CHAPTER 8. Bibliography..126

viii

List of Figures

Figure 1-1 Operating Systems Sit on the Boundary Between Applications and the Raw
Hardware... 2

Figure 2-1 Internal Structure of a Disk Drive.. 16

Figure 2-2 SPEC CPU95 Integer Base Results, 1995-1999.. 26

Figure 2-3 Ratio of Disk Capacity to Memory Capacity, 1992-1999................................ 27

Figure 3-1 Illustration of a Directory Hierarchy.. 30

Figure 3-2 Illustration of the Log-structured File System Architecture............................ 38

Figure 5-1 Varying Segment Size for the Auspex Workload.. 68

Figure 5-2 Effect of Disk Characteristics on Overall Write Cost for the Auspex
Workload...71

Figure 5-3 Varying Segment Size for the Random Update Workload............................. 72

Figure 5-4 Cleaning and Hole-plugging for the Random Update Workload..................... 76

Figure 5-5 Cleaning and Hole-plugging for the Berkeley Auspex workload.................... 77

Figure 5-6 Adaptive Cleaning for the Random Update Workload.................................... 80

Figure 5-7 Adaptive Cleaning for the Berkeley Auspex Workload.................................. 81

Figure 5-8 Effect of Disk Characteristics on the Trade-off Between Cleaning and Hole-
plugging, for the Random Update Workload... 82

Figure 5-9 Varying Server Cache Size for the Auspex Workload..................................... 83

Figure 5-10 Overall Write Cost of Original LFS versus Modified LFS............................. 85

Figure 6-1 Write Sequential/Read Sequential Microbenchmark, 50% Disk Utilization... 94

Figure 6-2 Write Sequential/Read Sequential Microbenchmark, 90% Disk Utilization... 94

ix

Figure 6-3 Write Random/Read Sequential Microbenchmark, 50% Disk Utilization....... 96

Figure 6-4 Write Random/Read Sequential Microbenchmark, 90% Disk Utilization....... 96

Figure 6-5 Write and Read Non-Sequential Pattern Microbenchmark, 50% Disk
Utilization.. 98

Figure 6-6 Write and Read Non-Sequential Pattern Microbenchmark, 90% Disk
Utilization.. 98

Figure 6-7 LFS and LFS with Dynamic Reorganization for Microbenchmarks, 50% Disk
Utilization... 106

Figure 6-8 LFS and LFS with Dynamic Reorganization for Microbenchmarks, 50% Disk
Utilization, Average Disk Read Time.. 106

Figure 6-9 The Effect of Disk Utilization on Dynamic Reorganization for the Write Ra-
dom, Read Sequential Microbenchmark.. 108

Figure 6-10 The Effect of Disk Utilization on Dynamic Reorganization for the Write Ra-
dom, Read Sequential Microbenchmark (Average Disk Read Time).............................. 108

Figure 6-11 The Effect of Improving Disk Performance on Dynamic Reorganization for
the Write Random, Read Sequential Microbenchmark (Average Disk Read Time) 109

Figure 6-12 LFS versus LFS with Dynamic Reorganization for a Three Month Trace. 111

Figure 6-13 LFS versus LFS with Dynamic Reorganization for a Three Month Trace (Av-
erage Disk Read Time).. 111

Figure 6-14 LFS versus LFS with Dynamic Reorganization for TPC-D, 10 iterations of 17
queries (Average Disk Read Time).. 113

Figure 6-15 LFS versus LFS with Dynamic Reorganization for TPC-D, 10 iterations of
each query (Average Disk Read Time).. 113

Figure 6-16 LFS versus LFS with Dynamic Reorganization for TPC-D, 10 iterations of 17
queries... 114

Figure 6-17 LFS versus LFS with Dynamic Reorganization for TPC-D, 10 iterations of
each query... 114

x

List of Tables

Table 2-1 Summary of Recent Rates of Improvement for Processors, Disks and
Memory..13

Table 2-2 Percentage of Disk Drive Revenues By Drive Capacity...................................18

Table 2-3 Percentage of Disk Drive Shipments By Diameter..18

Table 2-4 Current Disk Performance Characteristics...19

Table 2-5 Trends In Hard Disk Performance Characteristics...20

Table 2-6 Relative Performance and Cost/Capacity of Disk and Memory........................27

Table 4-1 Common Characteristics of Various Workloads..49

xi

Acknowledgements

I would like to thank the members of dissertation committee: Tom Anderson, Joe Hellerstein,

Dave Patterson and Alice Agogino.

Tom is a researcher with a clear commitment to excellence. I have especially appreciated his

thorough revisions and insightful comments on my written work. He is also a superb writer and

communicator. I just hope that a little bit of it has rubbed off on me over the years!

I would like to thank Joe Hellerstein for being my local advisor in Tom’s absence. He rou-

tinely went above and beyond the call of duty in that role, despite the demands of his own research

and his own students. My last years at Berkeley would have been immensely more difficult it if it

hadn’t been for his willingness to get involved.

I am grateful to Dave Patterson for his focus on the overall development of graduate students.

I consistently think back to the “How To Have a Bad Academic Career” talk he gave in his com-

puter architecture course my first year. I marvel both at the depth and wisdom of his advice and at

the time he invested in communicating it to young graduate students in such a compelling manner.

It is just one example of the mentorship which is so obviously part of his life. It has been a privi-

lege to work with a true master of his craft.

Alice Agogino is a wonderful role model. It is inspiring to see such a successful, female fac-

ulty member in action. I am grateful to have taken a class with her and to have had her on my com-

mittee.

xii

I would especially like to thank my office mates throughout my time at Berkeley. I cannot

imagine my time at Berkeley without them.

In my first semester, I was assigned to a bull pen office for first year graduate students on the

third floor of Soda with Armando Fox, Angie Schuett, Eric Anderson and others. We did projects

together, went dancing together, instituted a weekly Disney movie night and overall settled into

our new lives together. In retrospect, I realize what a gift it was to bond so immediately with such

a wonderful group of people. They helped make Berkeley feel like home from the very start.

When I joined the NOW project, I moved into 475 Soda with the xFS file system crew: Mike

Dahlin, Randy Wang and Drew Roselli. We laughed; we fought; we danced the xFS victory dance;

we stayed up all night thinking “good thoughts” while our benchmarks ran. I am truly thankful for

that camaraderie and for always having a place I could ask even the silliest question. Mike Dahlin

was the senior graduate student in our group and a great mentor to me. He inspired me and others

to work on his vision because he was so able and willing to teach as he went. Randy Wang is

amazing in his ability to make things really work. I firmly believed that with a twirl of his pen, a

little classical music and one good night of hacking, he could make anything work. Drew Roselli

has been my partner in crime and my compatriot for the last several years. Together, we have

weathered administrators who didn’t want to let us turn in our tech reports, renew our copy cards,

etc. without an advisor, various difficult NTU students, and mountains of general angst. Being in it

together made all the difference in the world! Drew is a truly talented individual who isn’t afraid to

follow her own inspiration. Adam Costello joined our office joined our office as the xFS project

was winding down. He is a truly kind person who has many, many times gone out of his way to

help me or others. By example, he has taught me so many things, like the value of doing things

right the first time and of exploring a tangent.

xiii

I would also like to thank the other members of the NOW project — for bus rides, for sled

rides, for long lunches, for help cheerfully given and for honest yet kind critiques.

I would like to thank my friends from outside the computer science department for their sup-

port, for their prayers and for moments of sanity and perspective. I would especially like to thank

Andrew and Susan Dickens and their family, Taylor and Youla Overby and their family, Cyndi

Diaz , Pam Norton, and Matthew Artzen.

I would certainly like to thank my family. My mother, JoAnn Krach, and my grandmother,

Wilda Motts, especially, have always believed in me, given me unconditional love and acceptance

and encouraged me to push just a little more. My husband’s parents, Robert and Barbara Mat-

thews, welcomed me into their lives and gave me a whole second family to belong too.

Finally, I cannot find words to express my overwhelming thanks to my husband Lenny for his

love, his wisdom and his absolute guts and determination. I am truly blessed to have such a tal-

ented and dynamic partner with whom to share my life. Lenny, you make this life a joy and an

adventure every day! I would also like to thank my children Robert and Abigail for their patience

and their sweetness. They truly are the delight of my heart.

Above all, I would like to thank God for being my sufficiency in all things — especially grad-

uate school.

1

1 Introduction

1.1. Motivation

Operating systems sit on the boundary between applications and the raw hardware (Figure 1-

1). Their mission is to marshal the best combination of hardware resources to efficiently and fairly

satisfy the needs of all the applications using the system. They enable diverse applications to co-

exist in the same system by protecting applications from each other and by providing communica-

tion and resource sharing between applications. They provide a simplified abstraction of the raw

hardware, yet they are expected to deliver to the end user the full performance potential of the

hardware. Also, it is important for operating systems to be highly reliable because the reliability of

the applications on which users depend can be no better than that of the underlying system.

Operating system design is especially challenging because applications place diverse demands

on the system. For example, applications may have different data integrity constraints or may per-

form best with different cache replacement strategies. Applications as varied as scientific simula-

tions, software development and multi-media presentations may be running together on a single

computer system.

To make matters worse, operating systems implementations often live through many genera-

tions of hardware technology. Operating system software changes slowly because any modifica-

tion can introduce unexpected errors, requiring costly testing procedures to reverify correctness to

meet user demands for reliability. On the other hand, hardware changes rapidly. Processors, mem-

2

ory and disks are all improving exponentially, but a different rates. Each year, the number of

cycles needed for an average memory access changes, the relative price of memory and disk

changes, etc. To be efficient, operating systems must shift work away from the pieces of hardware

that are limiting the system. With each hardware resource changing at a different exponential rate,

system bottlenecks change over time.

For the most part, operating systems designers have dealt with this challenging situation by

optimizing for a fixed point on the moving target of hardware and workload characteristics. The

typical model is as follows. Determine a “common case” workload to use as a benchmark. Then,

tune the system for this benchmark and for the characteristics of the hardware available at the time

the system is designed. In this model, workloads with different requirements than the “common

Operating Systems

Applications

Hardware

FIGURE 1-1. Operating systems sit on the boundary between
applications and the raw hardware.

File
System Memory Scheduling

Virtual
Security

System

3

case” benchmark may not be well served. In addition, as hardware improves or workload changes,

a static operating system may become untuned, even in the common case.

Operating system designers have sometimes dealt with the problem of diverse environments

by developing interfaces by which users, system administrators or application writers may alter

operating system behavior to suit their needs. The simplest example is the exposing of parameters

that can be set when the operating system is installed or before it begins executing. Exposing such

parameters is an improvement over statically optimized systems because they allow the system to

be adjusted based on the workload and hardware factors that do not change as the system is run-

ning.

However, the multiple levels of abstraction in modern computer systems hide much activity

from the end user and even an experienced user or expert system administrator may have difficulty

choosing optimal parameter settings for their environment. For a concrete example of the difficul-

ties of setting parameters, consider SAM, a system administrator tool for HP-UX with a GUI inter-

face designed to simplify routine system administration tasks. Under kernel configuration and

configurable parameters, SAM allows about 100 parameters to be configured. Examples include

the scheduling interval, the number of priority levels for the scheduler, the percentage of available

memory to allocate to the buffer cache, maximum write delay time, read-ahead window and the

size of a second-chance paging list. The current value of each parameter is listed and often a short

description of its purpose. Some like nproc (“Maximum Number of Processes”) are fairly intui-

tive. However, others like no_lvm_disks (“Boolean; Set only if systems has no LVM disks”) are

less clear. Others like acctresume (“Threshold to Resume Accounting”) do not indicate any rele-

vant units. Still others like vme_io_estimate contain no description at all.

Designing extensible systems is another approach to dealing with the problems of heteroge-

neous environments. Extensible systems provide user-level access to interfaces through which

4

application writers can implement their own versions of system services. This provides even more

flexibility to alter system behavior. It allows not only the parameters of a single implementation to

be customized; it allows the entire implementation to be customized.

Extensible systems are especially attractive for those application writers who understand the

needs of their applications extremely well and whose applications are not currently well served by

the generic services provided by the operating system. Without extensible systems, these applica-

tion writers might be tempted to write an entire operating system customized to their application.

Extensible systems offer them the opportunity to implement only those services to which their

applications are extremely sensitive. However, implementing an operating system extension is

even more complicated than setting a multitude of exposed parameters. Thus, the benefits of

extensible systems are limited by the number and applicability of customized implementations.

Furthermore, extensible systems have difficulty providing communication between extensions

and in enforcing protection and performance isolation between them. Allowing each application to

choose its own version of system services has similar problems to allowing each citizen of a soci-

ety to choose a government customized to their needs. Finally, even an extension customized for a

specific application must deal with a rapidly changing hardware base and most likely even diverse

workload patterns from different users of the same application.

Ideally, these problems could be avoided if operating systems could be designed to adapt

themselves to their changing environment. However, changing in response to every variation in

environment would be prohibitively expensive and complex. It would require: 1) monitoring every

detail of a constantly changing environment, 2) implementing every possible alternate system

behavior and 3) modeling the trade-offs between all these alternatives.

5

This suggests some interesting questions. Could designers take just a few of the configurable

parameters they have exposed and find a way to set them automatically? Are there any situations

in which the system could automatically identify the best extensible module for a given workload?

If measuring every detail of the system is too time-consuming, would it be possible to measure a

few key parameters with significant impact on system performance or robustness? If it is too diffi-

cult to anticipate every possible change in technology, could the system at least be prepared to

scale with foreseeable technology trends? If it is too complicated to model the system in enough

detail to achieve optimal performance in every situation, could a simple model at least avoid dra-

matically lower worst case performance? If it would be prohibitively expensive to implement

every possible alternative behavior, could just a few options satisfy a significantly larger fraction

of environments than just one static policy? This thesis argues that the answer to these questions is

yes — that the systematic application of simple adaptive methods can produce systems of reason-

able complexity that are significantly more robust than existing systems to changing hardware and

diverse workload characteristics.

1.2. Adaptive Methods

An adaptive method is an algorithm that alters system behavior by:

1. Measuring the characteristics of available hardware resources.

2. Measuring the characteristics of the workloads applications place on the system.

3. Using analytical models to balance the trade-offs between possible system actions.

Least-recently-used caching is an example of a very simple adaptive method which takes into

account the access stream and the fact that the cache can be accessed more quickly than its backing

store. Database query optimizers are a more complex example. They consider many parameters

including the number of tables being accessed, the number and type of indices on these tables, any

6

join criteria between the tables and the way in which the tables are stored [Selinger et al.,

1979][Mackert and Lohman, 1986].

Adaptive methods have been successfully applied to many areas of computer science. To

name just a few examples: In networks, TCP includes algorithms to adapt retransmission timers

and window sizes to avoid congestion in the network [Jacobson and Karels, 1988]. In architecture,

reconfigurable computing tailors and dedicates functional units to take advantage of application

dependent dataflow [Villasenor and Mangione-Smith, 1997]. In distributed systems, implicit

coscheduling uses locally observed round trip time and message arrivals to adaptively schedule the

pieces of a parallel program at the same time on separate machines [Arpaci-Duseeau et al., 1998].

In storage systems, AutoRAID moves data into the faster mirrored region from the RAID-5 region

as it is accessed more frequently and also adjusts the amount of space in the two regions based on

how full the storage system is [Wilkes et al., 1995]. In compilers, runtime systems have been

developed to re-optimize code based on profiling of the instruction stream or based on hardware

characteristics like the cache size or pipeline characteristics [Compaq Digital, 1999][Java, 1999].

In control theory, adaptive methods are formalized as the optimization of functions of dynamically

changing variables in order to prove when a solution is optimal or robust [Feiertag and Organick,

1971][Clark, 1992].

1.3. Adaptive Methods In File System Design

In this thesis, I focus on developing simple and effective adaptive methods for file systems.

The file system is the part of the operating system that is responsible for the correct and efficient

retrieval of data from stable storage. File systems are a particularly interesting case study for the

application of adaptive methods for several reasons. First, file system performance is critical to the

overall performance of the system due to the widely recognized “I/O gap” which has occurred as

7

improvements in processor and memory technology have far outpaced improvements in disk tech-

nology. Second, extensible file system designs have difficulty dynamically sharing the physical

storage media between multiple implementations. Third, the file system has high reliability

requirements because the rest of the system depends on the file system to correctly retrieve execut-

ables and data from stable storage; therefore, the trade-offs between complexity and performance

for adaptive file systems methods are particularly interesting.

File system designers, like all operating system designers, must cope with a wide variety of

usage patterns. In some environments, files tend to be small and to be read and written sequentially

in their entirety [Baker et al., 1991]; other environments are dominated by random access to large

files [TPC-C, 1990]. In some environments, there are frequent idle periods in which the system

can perform optimization activities without disturbing users [Blackwell et al., 1995]; in other envi-

ronments, the system is constantly responding to application requests [Network Appliance,

1997a]. In some environments, there is a high degree of locality in the set of data that is actively

accessed [Baker et al., 1991]; other environments are dominated by streaming access to large files

[Bolosky et al., 1996].

File system designers are also faced with the rapid evolution of modern storage systems. A

single file system may be used to store data on a single disk or on a complex storage array with

many disks. Even the characteristics of individual disks have been rapidly changing. Rapid

improvements in aerial densities enabled by precise optical positioning of disk heads has led to

dramatic improvements in disk capacity and bandwidth; improvements in disk latency continue to

be stalled by mechanical access delays.

File systems must also deal with the fundamentally different performance characteristics of

read and write access. For the durability of writes across system-crashes, it is not crucial where on

disk new data is placed. Many systems have used this fact to improve write performance by batch-

8

ing writes [Rosenblum and Ousterhout, 1992], reordering writes [Seltzer et al., 1990] or placing

writes into the nearest free disk location [Chao et al., 1992][English and Stepanov, 1992][Hitz et

al., 1995][Wang et al., 1999]. These same techniques are not well suited to improving read perfor-

mance; reads must be directed to the position of the last write — not any convenient location. In

fact, these techniques which are effective at improving write performance can actually decrease

read performance by scattering related data as it is written.

Nowhere is the need for adaptive methods more apparent than in the area of file system layout

policies. File system layout policies must provide stable and robust performance across a wide

range of workloads, must balance the differing needs of read and write access patterns and must

provide high performance access to rapidly evolving storage systems. However, file system design

has been dominated by a variety of static layout policies all of which fail in at least one of these

criteria. The Berkeley Fast File System [McKusick et al., 1984] does not expose the high perfor-

mance possible from modern storage systems. The Log-Structured File System [Rosenblum and

Ousterhout, 1992] does not provide stable performance across a wide range of workloads [Seltzer

et al., 1995]. Write-Anywhere systems [Chao et al., 1992][English and Stepanov, 1992][Hitz et al.,

1995][Wang et al., 1999] do not balance the differing needs of read and write access patterns. To

date, file system designers have not combined the best of these various systems. Instead, the dis-

cussion of layout policies has been dominated by arguments over what “common case” workload

should be used to evaluate them or what hardware resources are reasonable to assume in every sys-

tem.

1.4. Contributions of this Dissertation

My thesis is that the systematic application of simple adaptive methods to file system design

can produce systems that are significantly more robust to changing hardware and diverse work-

9

loads than existing systems. This dissertation contains two main categories of optimizations —

those targeted at improving write performance and those targeted at improving read performance.

I contribute to providing high write performance by designing adaptive methods that allow a

log-structured file system (LFS) to provide robust write performance in a wide range of environ-

ments. I begin with LFS because its common case write performance is excellent and in fact, it is

considered a write-optimized file system. In addition, it has many other benefits including ease of

recovery and the ability to scale with technology trends that favor large transfers to disk. However,

in certain cases, LFS exhibits dramatically lower performance due to the overhead of its cleaner or

garbage collection process. This problem with LFS, pointed out in [Seltzer et al., 1993] and [Selt-

zer et al., 1995], led many to discount LFS as an interesting but impractical design. In this disserta-

tion, I demonstrate that by incorporating adaptive methods into the system, LFS can retain its

excellent common case performance and perform as well as other alternatives in the situations for

which it formerly had poor performance.

I make the following contributions to improving LFS write performance:

1. Large transfer sizes make the most efficient use of disk bandwidth, but I show that they have a

contervailing detrimental effect on garbage collection overhead. I show how to choose the LFS

segment size by trading transfer efficiency against cleaning efficiency.

2. I present an adaptive garbage collection algorithm that combines traditional LFS cleaning with

an alternate garbage collection mechanism called hole-plugging [Wilkes et al., 1995]. This

algorithm dynamically adapts to changes in disk utilization and workload to avoid the tradi-

tional LFS performance cliff at high disk utilizations, while still preserving the advantage LFS

has at lower disk utilizations.

3. I show how to further reduce cleaning overhead by taking advantage of cached segments when

cleaning.

10

Together, these enhancements make LFS more stable over a wider range of workloads by

eliminating its dramatic worst case performance. Overall, these modifications improve LFS write

performance by up to a factor of four and reduce cleaning overhead by up to a factor of six.

I also contribute to providing robust read performance by designing adaptive methods that

identify and cluster together groups of related data. These algorithms are relevant to LFS as well as

other file system architectures. LFS can benefit from adaptive data reorganization when read pat-

terns do not match write patterns or when cleaning disturbs the temporal locality of the original

log. Write-anywhere systems can benefit from adaptive data reorganization because they scatter

data to the most convenient location as it is written. Even read-optimized systems which attempt to

group whole files and directories together can benefit from adaptive data reorganization when read

patterns do not follow the directory hierarchy or when the disk becomes fragmented and they are

forced to allocate files in many small discontiguous fragments.

I make the following contributions to improving file system read performance:

1. I demonstrate how existing layout policies which are not adaptive fail to provide robust read

performance when read patterns do not match the default layout or when the default layout is

disturbed by fragmentation or garbage collection.

2. I present a dynamic reorganization algorithm that uses past read access patterns to predict

future read patterns and to group data together on disk accordingly.

3. Within the context of LFS, I show how dynamic reorganization can be used to augment a write-

optimized system by suggesting targeted improvements to existing data layout.

Together, these optimizations allow disk layout to change over time to support efficient read

access and enable the system to balance the competing demands of read and write access.

11

1.5. Organization of the Dissertation

The body of this thesis consists of 6 chapters.

Chapters 2 through 4 examine each layer of Figure 1-1 on page 2 as they relate specifically to

file systems. In Chapter 2, I discuss trends in hardware technology. In Chapter 3, I give a brief his-

tory of file system design and describe existing file system designs. In Chapter 4, I discuss varia-

tions in workload characteristics and how they affect the relative merits of the various file system

architectures. Together, Chapters 2 through 4 motivate the need for adaptive methods in file sys-

tem design.

Chapters 5 and 6 present various adaptive file system methods and show their benefit to exist-

ing file system designs. In Chapter 5, I show how to improve the write performance of log-struc-

tured file systems by the application of adaptive methods to reduce the cleaning overhead. In

Chapter 6, I show how to improve read performance and how to balance read performance and

write performance with a dynamic reorganization algorithm.

Finally, Chapter 7 summarizes the key conclusions of this dissertation, points out some of the

lessons I have learned while doing this work, and discusses areas that would benefit from further

investigation.

12

2 Technology Trends

In this chapter, I discuss trends in hardware technology that are especially relevant to file sys-

tem performance and to which it is most important to adapt.

2.1. Overview

“I/O certainly has been lagging in the last decade.”— Seymour Cray (1976)

“I/O’s revenge is at hand” — Hennessy and Patterson (1996)

Storage systems have increasingly become the bottleneck in modern computer systems

because improvements in mechanical disk access latency, such as seek and rotational delay, have

failed to keep pace with improvements in integrated circuit technology. While processor speed has

been doubling approximately every 18 months, the rate at which the disk can position the head has

been doubling only every ten years! This situation is commonly referred to as the I/O bottleneck or

the “I/O gap”.

Disk bandwidth, however, has been improving much faster than disk latency due to rapidly

increasing aerial densities. This indicates an opportunity to narrow the I/O gap with techniques

that scale with disk bandwidth rather than latency. This has placed a premium on finding ways to

avoid latency by placing data in nearby disk locations or to amortize latency with larger transfer

sizes. Although main memory latency has not improved dramatically, it is still much faster than

13

disk in absolute terms. However, disk technologies are improving at a faster rate than memory

technologies in access times, bandwidth and cost/capacity.

Table 2-1 summarizes recent rates of improvement for processors, memory and disk. In the

sections that follow, I document and discuss these trends and their implications for file system

design. Documenting technology trends requires access to historical cost and performance data

with accurate dates. Such data can sometimes be difficult to find. Many hardware vendors only

provide prices and performance data for currently shipping products. Many provide specification

sheets for older products, but with no corresponding date of introduction. Examining the advertise-

ments in past issues of popular computer magazines like Byte or PC Magazine can be good source

for some types of historical data, especially price data. However, advertisements do not always

provide detailed performance information. Independent benchmarking organizations exist for

some products and can provide excellent historical information by way of dated publications com-

paring available products. Despite these difficulties, documenting historical trends is important to

prepare for the cumulative effects of exponential improvements over time.

TABLE 2-1. Summary of Recent Rates of Improvement for Processors, Disks and Memory This
summaries recent technology trends. The trends are discussed and illustrated in greater detail in the
sections which follow. The rate for processor performance improvement was computed from
performance ratings reported in periodic SPEC newsletters (Section 2.3). The rates for improvements
in disk and memory characteristics are as reported in Professor David Patterson’s keynote address at
SIGMOD98, “Hardware Technology Trends and Database Opportunities”.

Rate of
Improvement

Performance
Doubles In

1998
Baseline Discussed in

Processor Performance 57% per year 1.5 years 10-15
SPECINT95

Section 2.3

Disk Access Latency 8% per year 9.0 years 9 milliseconds Section 2.2

Disk Bandwidth 40% per year 2.1 years 15-21 MB/sec Section 2.2
Disk Cost/Capacity 60% per year 1.5 years $0.09/MB Section 2.2
Memory Access Latency 7% per year 10 years 10 nanoseconds Section 2.4

Memory Bandwidth 20% per year 3.8 years 800 MB/sec Section 2.4
Memory Cost/Capacity 25% per year 3.1 years $1.19/MB Section 2.4

14

2.2. Trends in Storage Technology

Magnetic disks are the dominant technology used for stable on-line storage of data. In

Section 2.2.1, I briefly review the internals of a disk drive. In Sections 2.2.2 through 2.2.5, I dis-

cuss trends in magnetic disk technology and some relevant facts about the disk drive industry.

2.2.1. Internal Structure of a Disk Drive

Figure 2-1 illustrates the internal structure of a disk drive. A disk drive consists of a number of

platters anchored to a central spindle. Normally, the platters are covered on both sides with a thin

coating of magnetic media which serves are the recording media. There is one disk arm which con-

tains a read/write head for each recording surface. All the read/write heads share a common data

channel. Therefore, only one head may be active at any one time.

Each platter is divided into concentric circles called tracks. A cylinder is the set of tracks, one

per platter, that are at the same offset from the spindle. Each track is further divided into sequential

units called sectors. A sector is of fixed size (often 512 bytes) and is the smallest addressable unit

of data within the disk drive. Some drives guarantee the atomicity of single sector writes (i.e. the

entire sector will be completely changed to the newly written value or none of it will). In drives

that do not guarantee the atomicity of sector writes, a power failure can corrupt the current sector

being written. In either case, writes involving more than one sector are not guaranteed to be

atomic.

Most modern disks divide the disk into groups of adjacent cylinders or zones in order to take

advantage of the fact that the outer tracks are larger and able to store more data than the inner

tracks. Within each zone, there are a fixed number of sectors per track; outer zones have more sec-

tors per track and therefore higher bandwidth. Multiple zones provides higher capacities and

higher bandwidths for some areas of the disk. However, zoned disks are more costly and complex

15

because the drive’s microprocessor must interpret/produce a different frequency of magnetic sig-

nal for each zone [Schwaderer and Wilson, 1996].

In order to access a specific disk address, the disk arm first moves or seeks to the proper cylin-

der. The time required to perform this action is called seek time. Seek time is an non-linear func-

tion of the number of cylinders that must be traversed. Long seeks involve first speeding up the

disk arm to cover some distance and then slowing it back down as the desired cylinder approaches.

A one track seek is relatively inexpensive because the tracks are so close together that moving the

head over one track can be considered a special case of the minute adjustments, compared to the

physical size of the disk head, required to keep the head positioned when reading or writing. Aver-

age seek times may be lower for reads because reads can probabilistically sense the data even

before the head has completely settled above the correct track.

Once the disk arm is located over the proper cylinder, the disk platters must rotate until the

desired disk location is directly under the read/write head. The time required for this is called rota-

tional latency. The sum of seek and rotational delay along with overhead added by the disk con-

troller is sometimes referred to collectively as head settling time or access latency. Finally, transfer

time is the time required for the desired data to pass under the head.

Disk drives contain more storage space than is exposed to the file system. First, each sector

contains a header and error correction codes by which positioning and recording errors can be

detected and repaired. Second, drives are formatted with space sectors which can be used to

replace normal data sectors in which frequent recording errors have been detected.

2.2.2. Improvements In Aerial Density

Magnetic disk technology has seen dramatic improvements in the density of data stored on the

recording surfaces. The first disk drive produced was the RAMAC in 1956. It was the size of two

16

Spindle

Platters

Disk Arm
(a) side view

(b) top view

Single platter

Disk Arm With
Read/Write Head

FIGURE 2-1. Internal Structure of a Disk Drive This figure gives a high-
level view of the internal structure of a disk drive. The top illustration shows a
side view of four platters attached to a central spindle and a disk arm with
read/write heads for each recording surface. The bottom illustration shows the
top view of a platter and the disk arm with the read/write head. The shaded
area of the platter represents a single track, divided into eight sectors. In
reality, modern disks can have tens of thousands of tracks with hundreds of
sectors per track.

17

refrigerators and contained 50 platters, each 24 inches in diameter. That is a far cry from modern

drives with two 2.5 inch platters — especially considering that the modern drives hold over 200

times as much data! Over the entire period 1956 to present, aerial densities have improved at an

average rate of 33% per year1. More recently, aerial density has been improving at about 60% per

year [Grochowski, 1998] due to developments in magnetoresitive (MR) heads and better magnetic

media [Schwaderer and Wilson, 1996]. These improvements in data density have been used to fuel

both larger capacity and smaller form factor drives.

Indications are that current increases in data density are being channeled into higher capacity,

rather than smaller form factor, drives. Tables 2-2 and 2-3 present data from the 1999

DISK/TREND report [DISK/TREND, 1999]. Table 2-2 indicates that disks of larger and larger

capacity will dominate the market; while Table 2-3 indicates that the form factors will remain

fairly constant. Five and a quarter and three and half inch drives are typically used in desktop com-

puters with three and half inch drives taking the lead. Two and half inch drives have become the

standard for notebook computers. Smaller drives have been demonstrated, but applications with

reasonable volume have not been demonstrated [Schwaderer and Wilson, 1996]. Large capacity

disks present a problem for file system architectures whose crash recovery time scales with total

storage capacity.

1. This was calculated from data provided by Quantum Corporation. They list the MB/in2 for disks repre-
senting firsts in disk drive technology from 1956 through 1995 [Quantum, 1999a].

18

TABLE 2-2. Percentage of Disk Drive Revenues By Drive Capacity The data in this table is from
the on-line portion of the 1999 DISK/TREND Report. The table lists the percentage of each year’s
total revenue represented by sales of disks of various capacities. Total revenues in 1998 were
approximately $30 billion and are projected to be approximately $36 billion and $50 billion in 2000
and 2002 respectively.

TABLE 2-3. Percentage of Disk Drive Shipments By Diameter The data in this table is from the
on-line portion of the 1999 DISK/TREND Report. This table lists the percentage of each year’s total
worldwide unit shipments for disks of various diameters. Total worldwide unit shipments in 1998
were approximately 145 million units and are projected to be approximately 194 million units and
253 million units in 2000 and 2002 respectively.

2.2.3. Improvements In Access Time

Unfortunately, historical disk performance characteristics with accurate dates are difficult to

find. Some disk manufactures supply specifications for drives no longer being sold, but do not

indicate the year a drive was first offered. Quantum Corporation provides an interesting on-line list

of “Firsts in Disk Drive Technology”, but the parameters listed for each drive do not include

access latency and the last drive listed was introduced in 1995 [Quantum, 1999a]. Advertisements

Percentage of sales
revenues of fixed disk
drives

1998
Revenues

2000
Revenues
(Forecast)

2002
Revenue
(Forecast)

Less than 2 GB 1.20 % 0.16 % 0.19 %
2-3GB 13.00 % 0.94 % 0.00 %
3-5 GB 41.00 % 4.30 % 0.30 %

5-10 GB 31.00 % 21.00 % 1.50 %
10-20 GB 13.00 % 39.00 % 5.80 %
20-40 GB 0.21 % 28.00 % 20.00 %

40-80 GB 0.53 % 5.70 % 37.00 %
More than 80 GB 0.00 % 0.47 % 35.00 %

Percentage of
Worldwide Unit
Shipments

1998
Shipments

2000
Shipments
(Forecast)

2002
Shipments
(Forecast)

5.25 inch 2.80 % 0.56 % 0.00 %
3.5 inch 85.00 % 87.00 % 87.00 %
2.5 inch 12.00 % 12.00 % 13.00 %

1.8 inch or less 0.08 % 0.13 % 0.30 %

19

in popular computer magazines list the interface and the capacity of each drive, but not detailed

performance information.

Patterson recently summarized recent hardware trends in a key note address at the 1998 ACM

SIGMOD conference [Patterson, 1998]. Table 2-4 lists disk performance characteristics given in

that presentation. In addition, in Table 2-5, I list the performance characteristics for four disk

drives produced in the last decade. In the first three columns, I use the dates and performance

parameters reported by Garth Gibson [Gibson, 1992] and Mike Dahlin [Dahlin, 1996] in similar

discussions of technology trends and add a more recent data point for the Seagate Cheetah

[Seagate, 1998]. I compute the average rate of improvement for each parameter listed. The rates at

which seek and rotational delay are improving closely match the trends reported in [Patterson,

1998]. Recently, however, disk bandwidth has been improving more rapidly than the historical

average due to recent improvements in disk head technology [Grochowski, 1998].

TABLE 2-4. Current Disk Performance Characteristics This data is taken data presented in
Professor David Patterson’s keynote address at SIGMOD98, “Hardware Technology Trends and
Database Opportunities”. Access latency refers to the time for an average seek plus one-half rotation.

Improvement
Per Year

1998
Baseline

Disk Access latency 8% 9 milliseconds
Disk Bandwidth 40% 15-21 MB/sec
Disk Cost/Capacity 60% $0.09/MB

20

TABLE 2-5. Trends In Hard Disk Performance Characteristics. This table compares a series of
disk drives from 1987 through 1998. Performance data for the first three drives are taken from similar
discussions of technology trends found in [Gibson, 1992] and [Dahlin, 1996]. Performance data for
the 1998 drive is taken from the product specification sheet available from the manufacturer [Seagate,
1998]. For each drive, average seek time, rotational speed, average rotational latency and maximum
bandwidth are reported. In addition, the average time for an 8KB and a 1MB transfer are computed.
They include the time for one average seek (read), one half rotation and the transfer size divided by
the maximum bandwidth. Finally, the half-power point for each drive is computed by multiplying the
average access time (one average seek (read) plus one half rotation) times the maximum bandwidth.

Seek and rotational latency has been improving much more slowly than data density because

they are limited by mechanical delays. Rotational latency is determined by how fast the platters

can spin and by the maximum rate of the data channel in the disk arm. Spindle speed has increased

by about 9% per year from 3600 RPM in 1987 to over 10,000 RPM in 1999. Seek time is deter-

mined by the time it takes the disk arm to move across the platters. This time has decreased with

the decreases in platter diameter and with improvements in disk arm actuator technology, but

improvements have been limited to approximately 9% per year. If platter diameter remains fairly

constant as predicted by Table 2-3, these improvements may slow even further.

Disk bandwidth is partially determined by the data density; at greater data densities, the

amount of data passing by the head becomes greater even at the same rotational speed. Disk band-

1987 1990 1994 1998
Improvement Rates
(%/year)

Model Fujitsu
M2361A

Seagate
Elite 1
ST41600N

Seagate
Barracuda 4
ST15150N

Seagate
Cheetah 18
ST118202LW

Average Seek Time (ms) 16.7 11.5 8.0/9.0
(read/write)

6.0/6.8
(read/write)

9 %

Rotational Speed (RPM)
Average Latency (ms)

3600
8.3

5400
5.56

7200
4.2

10,025
2.99

9 %

Maximum. Bandwidth
(MB/sec)

2.5 5 9 29 25 %

8 KB Transfer (ms) 28.3 18.9 13.1 9.3 10 %
1 MB Transfer (ms) 425 244 123 43.5 19 %
Half-power point (KB) 62.5 85.3 110 261 14 %

21

width also improves with increases in rotational speed. As a result, as indicated in Table 2-5, disk

bandwidth has been improving at a greater rate than seek and rotational delay.

Table 2-5 also indicates trends in total transfer time for both a small 8KB access and a large

1MB access. The small transfer is almost completely dominated by seek and rotational delay;

while the large transfer scales with disk bandwidth. This illustrates an opportunity to narrow the

I/O gap with large transfers if the file system is able to successfully group large groups of data

together for sequential transfer.

One way to discuss the balance between access latency and bandwidth is the half-power point,

or the transfer size required to achieve half of the raw bandwidth potential of a disk. The half-

power point is the product of seek and rotational latency and bandwidth. It represents the point at

which half of the total access time is spent in positioning the disk head and half of the time is spent

in transferring data to or from the media. As disk bandwidth increases more rapidly than seek and

rotational delay, this half-power point is steadily increasing. Therefore, each generation of disk

technology requires larger transfers in order to achieve the same percentage of the raw transfer rate

available from disk. Based on the four sample drives in Table 2-5, the half-power point has been

increasing by approximately 14% per year over the past ten years. With disk bandwidth improving

at a rate of 40% per year and seek and rotational delay at 8% per year, this half-power point is cur-

rently increasing at a rate of almost 30% per year.

HalfPower 2 Latency2 Bandwidth2× 1 0.08–() Latency1⋅ 1 0.40+() Bandwidth 1⋅×= =

1.29 Latency1× Bandwidth× 1 1.29 HalfPower 1⋅==

22

Because disk bandwidth is improving more rapidly than disk access latency, using single disks

efficiently requires amortizing access latency over larger transfers or avoiding access latency by

accessing nearby disk locations.

2.2.4. Disk Arrays

According to the 1998 and 1999 DISK/TREND reports, disk arrays account for 30% of the

total fixed storage market.1 Further, this percentage is forecasted to stay fairly constant through

2001. Disk arrays in single user systems are rare. Most disk arrays are placed in midrange to main-

frame environments. A growing open system server market has led to a variety of network

attached disk array systems.

The configuration of disk arrays is normally described by RAID (Redundant Arrays of Inex-

pensive Disks) levels 0 through 5 [Gibson, 1992]. The most commonly used levels are 0, 1 and 5.

RAID-0 actually contains no redundancy and is simply an array of independent disks that stripe

the data. In RAID-1, each disk is fully mirrored on another disk, reducing the useful storage capac-

ity in half in exchange for much higher data availability. In RAID-5, the total storage capacity of

the system is logically divided into stripes of data that stretch across the N disks in the system. For

each stripe, each disk contains a data block. Of the N blocks in each stripe, N-1 contain actual data,

while one contains the parity block. A parity block is the logical bitwise OR of the N-1 data

blocks. It is a piece of redundant information that allows any one missing block in the stripe to be

reconstructed from the information contained in the other N-1. Therefore, RAID-5 allocates 1/Nth

1. The on-line portion of the 1998 DISK/TREND Report lists the total disk array market at $11 billion in
1997 and forecasts $13 billion for 1998. The on-line portion of the 1999 DISK/TREND Report lists the
single rigid disk drive market at $30 billion in 1998. Unfortunately, both full reports would cost over
$10,000. I used the forecast for the 1998 disk array market and the reported 1998 single rigid disk drive
market to compute the 30% average. The projections for 2001 from the two reports are $16 billion for
disk arrays and $43 billion in single rigid disk drives, giving a projected 27% of the market to disk arrays.

23

of the total storage capacity to increase data availability, but increases the cost/capacity of the sys-

tem at the same time.

In addition to increased reliability, disk arrays can offer the potential to utilize the aggregate

bandwidth of many disks. A single transfer of data that spans many disks or multiple transfers that

access different disks will achieve higher throughput. However, disk arrays typically have higher

access latency due to added controller delay and network delay in the case of network-attached

systems. In addition, parity schemes suffer an additional penalty for single block write transfers

because the parity block must be read and updated in addition the actual data transfer.

2.2.5. Storage System Interfaces

Despite their internal complexities, disks present a relatively simple interface to the file sys-

tem: total capacity of a storage device as an array of fixed-size sectors. Techniques exist for look-

ing beyond this simple interface and extracting the relevant performance characteristics of disk

drives [Worthington et al., 1995][Talagala et al., 1999]. [Worthington et al., 1995] present several

tools for on-line extraction of SCSI disk parameters. [Talagala et al., 1999] presents a series of

three benchmarks which can be used to extract a multitude of disk performance parameters from

any disk. The parameters identified dynamically by such tools include the number of heads, head

switch time, cylinder switch time, sectors per track, bandwidth, rotational latency and a complete

seek profile. Benchmarks such as these can be run by the file system when a new storage system is

attached to the system. The benchmarks in [Talagala et al., 1999] run in under two seconds. The

results provide data needed by adaptive methods that are sensitive to disk performance characteris-

tics.

In addition, single disk drives use a predictable scheme for mapping the array offsets used by

the file system onto actual physical locations. In fact, disks map the array offsets specifically to

24

minimize the time between subsequent addresses. As a result, the file system can use subsequent

logical addresses as a good predictor of adjacent physical disk locations. For example, if array[n]

is the last block on a track, array[n+1] will be on the next track in the same cylinder and will be

rotationally offset to allow time for the head switch time. Similarly, if array[n] is the last block in a

cylinder, arrray[n+1] will be on the first track on the next cylinder and will be rotationally offset to

allow the time for a one cylinder seek. Over time, the disk may alter this mapping slightly to

replace bad sectors with space sectors, but the effect of this error remapping should be minor. If

the effect becomes significant, the file system could periodically run benchmarks to detect the

remapping.

Disk arrays present the same simple array interface to the file system. However, disk arrays

are significantly more complex internally than single disk drives. For example, some disk array

systems do a significant amount of data relocation and simply maintain a translation from the log-

ical address supplied by the file system to its chosen internal physical location [Wilkes et al.,

1995][EMC, 1999]. As as result, accessing adjacent array locations does not always have low

latency. Large transfers, however, are an efficient means for accessing disk arrays as well as single

disks. In fact, large transfer sizes are even more important for disk arrays because they can have

higher latency (RAID controller latency, RAID-5’s read-modify write penalty, possible network

latency) and higher bandwidth than single disks.

2.3. Trends in Processor Performance

For CPU performance, the Standard Performance Evaluation Corporation (SPEC) endorses a

collection of benchmarks suites which are used for standardized evaluation of processor perfor-

mance [SPEC, 1992][SPEC, 1995]. Vendors may submit benchmark results along with disclosures

of the testing procedures to SPEC for publication in SPEC’s periodic newsletters.

25

The SPEC CPU95 Benchmark is designed to test the CPU-intensive portion of commercial

and numeric/scientific applications. It contains a set of integer intensive programs referred to as

SPECINT and a set of floating point intensive programs referred to as SPECFP. SPEC requires

vendors to report both a peak and baseline measurement. The peak result can be achieved using

any compiler optimization; while the base result can use at most four compiler flags and has to use

the same compiler flags for all programs in the benchmark suite. The baseline measurements

should be more reflective of the actual performance improvements seen by applications compiled

with common optimization.

Figure 2-2 plots baseline SPECINT 95 benchmark results for every machine reporting results

in the SPEC newsletter on the y-axis with the date of the SPEC newsletter in which they were pub-

lished on the x-axis. The figure also plots the trend line using simple linear regression to fit an

exponential to the data. This shows that processor performance has been improving at a rate of

approximately 57% per year. This dramatic improvement in processor performance is due to

increases in the number of transistors per chip and increases in the speed of individual transistors,

both caused by steady improvements in the feature size of integrated circuits. In Section 2.2, we

will see that storage technology has been unable to follow this rate of improvement because disk

performance is limited by mechanical access delay.

26

2.4. Trends In Memory Technology

Table 2-6 recalls the average improvement rates and 1998 baseline figures for access latency,

bandwidth and cost/capacity for memory and disk as reported in [Patterson, 1998]. In absolute

terms memory is much faster than disk and disk is much cheaper than memory. However, latency,

bandwidth and cost/capacity are all improving more slowly for memory than for disk. Figure 2-3

illustrates one result of these trends. It shows that the ratio of disk capacity to memory capacity in

complete systems has been increasing overtime.

FIGURE 2-2. SPEC CPU95 Integer Base Results, 1995-1999. This figure plots
the SPECint95 results reported in SPEC’s quarterly newsletters from third quarter
of 1995 through third quarter of 1999. The points are baseline CINT95 speed
measurements. These speed measurements are expressed as the ratio of execution
time on the test machine compared to the execution time on a reference machine, a
Sun SPARCstation 10/40. The single figure reported is actually the geometric
mean of the SPEC ratios for each of the 6 programs in the CINT92 benchmark
suite. The 6 programs are written in C and represent the CPU intensive part of
system or commercial application programs. The ratios for the 6 individual
programs on a single machine can vary widely. Baseline refers to the fact that all
the programs are compiled with only conservative compiler optimizations (at most
four compiler flags and the same set used for all benchmarks). This figure indicates
that processor performance has recently been improving by about 57% per year.

27

TABLE 2-6. Relative Performance and Cost/Capacity of Disk and Memory This data is taken
from data presented in Professor David Patterson’s keynote address at SIGMOD98, “Hardware
Technology Trends and Database Opportunities”. Access latency refers to the time for an average
seek plus one-half rotation.

DRAM is a volatile storage medium— meaning that it does not retain its contents across power

failures. As a result, DRAM can be used as a cache of unmodified data to improve read perfor-

mance, but modified data is not stably stored until it reaches disk. Non-volatile DRAM

(NVRAM), however, can be used to safely buffer disk writes. Such buffering can improve write

performance by allowing data to be overwritten or deleted before it is ever written to disk. How-

ever, NVRAM is more expensive than volatile DRAM and is not considered as reliable as disk. In

DRAM Disk

Improvement
Per Year

1998
Baseline

Improvement
Per Year

1998
Baseline

Access latency 7% 10 nanoseconds 8% 9 milliseconds

Bandwidth 20% 800 MB/sec 40% 15-21 MB/sec
Cost/Capacity 25% $1.19/MB 60% $0.09/MB

FIGURE 2-3. Ratio of Disk Capacity to Memory Capacity, 1992-1999
This figure plots the ratio of disk size to memory size for complete systems
advertised in Byte or PC Magazine. Byte is used from January 1992
through July 1998. Byte went out of print in July 1998 so the January 1999
and July 1999 data points are from PC Magazine. The systems represented
include low-end to high-end desktop and server machined advertised by
Gateway, Micron, IBM, etc. I use simple linear regression to fit an
exponential to the data and find that total disk capacity relative to total
memory capacity is rising by about 19% per year.

28

practice, most file server machines have NVRAM, but desktop machines rarely do and even sys-

tems with NVRAM limit the amount of time data can be buffered before reaching disk.

2.5. Conclusions

In this section, I have discussed a variety of technology trends and their implications.

1. Disk bandwidth is improving more rapidly than access latency (seek and rotational delay). In

order to use the disk efficiently, latency must be avoided through larger transfers and reducing

seeks.

2. Increases in disk capacity imply the need for efficient crash recovery mechanisms that do not

increase in latency with increases in total storage capacity.

3. Overall system performance is increasingly limited by storage system performance, due to rap-

idly increasing processor performance and the slower rate of improvement in storage system

performance. This indicates the need to optimize for the I/O bottleneck.

4. Memory is improving more slowly than disk in terms of access latency, bandwidth and

cost/capacity. As a result, file systems do not have the luxury of relying on memory to hide all

the effects of disk latency.

In the next chapter, I discuss how major existing file system designs have wrestled with these

issues. In Chapter 4, I discuss variations in workload characteristics and how those variations

affect the relative merits of those file system designs.

29

3A Brief History of File Systems

File systems provide the interface between the raw storage system hardware and applications.

In the last chapter, I discussed hardware trends especially relevant to file system design. In this

chapter, I present a brief history of the evolution of file system architectures.

3.1. What is a File System?

File systems provide permanent storage and retrieval of named objects. These objects, called

files, are usually untyped byte arrays whose internal structure and interpretation is left to the user

or application that created them. Files are typically named within a hierarchical name space in

which special files called directories contain regular files and other directories. A directory is

referred to as the parent of all files and directories it contains. Figure 3-1 contains a sample direc-

tory hierarchy.

Main memory, which is smaller, faster and less reliable than disk, is used as a temporary stag-

ing area for file system data. Functionally, the file system makes the movement of data between

memory and disk transparent to the end user. However, the vast performance differences between

memory and disk make it difficult to truly hide this movement. As a result, most file system per-

formance enhancements revolve around hiding disk latency. Some common optimization tech-

niques, such as caching recently used data in memory, are designed to increase the percentage of

data accesses that can be satisfied without a disk access. Other common techniques, such as batch-

30

ing disk requests to adjacent blocks, are designed to access the disk more efficiently by minimiz-

ing seek and rotational delay.

The file system is responsible for the persistence of data across system failures. Therefore, it

must write all modified data to a disk or other persistent media.1 In addition to files and directo-

ries, the file system maintains system information, called meta-data, which is needed to interpret

the contents of the disk. For example, it must keep track of which portions of the disk are free for

writing new data. Each file is normally divided into pieces (either fixed sized pieces called blocks

or variable sized pieces called extents) and the location of each piece must be recorded. In addition

to files and directories, these and all other types of meta-data must be stored durably. 2

Many file system actions actually involve multiple updates to the persistent storage. For exam-

ple, moving a file from one directory to another involves changing the contents of both directories

1. Magnetic disks retain their data across power failures, but they are not immune to data loss from other
sources including mechanical failure and user error. In many environments, for added protection against
data loss, periodic backups of file system data are written to an off-line media like magnetic tape or writ-
able CD-ROM. In some cases, the file system controls this backup process directly.

FIGURE 3-1. Illustration of a Directory Hierarchy The directory
hierarchy begins with a special directory called the root directory, /,
which has no parent. Files can be executable, like the program “finger”
or text files like /mail/neefe or application specific data files like
paper.fm. Names are only meaningful within the context of this
directory structure. For example, neefe is both a directory within
/home/grad and a file within /mail.

/

home bin mail

grad ugrad prof neefe

neefe

paper.fm

finger

....

31

on disk. Both modified directories must be written to disk before the operation is complete. With-

out careful coordination of these separate updates, a system failure could might leave the file in

either directory, or both directories, or neither depending on the implementation of the operation

and the time of the failure.

Transactions are a model for grouping updates to persistent storage which have the following

properties [Gray, 1981]:

• Atomicity. Either all updates that are part of the transaction occur or none of them do.

• Consistency. Transactions leave the system in an internally consistent state.

• Isolation. The effects of a transaction are not visible to other applications until the transaction

completes.

• Durability. When a transaction completes and is made visible to the rest of the system, the

effects of that transaction are guaranteed to survive system failures.

File systems generally maintain strict transactional semantics for particular sets of updates to

system meta-data and to the directory hierarchy. This ensures that the file system structure will

remain consistent. For user data, they tend to make looser guarantees. For example, many file sys-

tems guarantee that data written will be stably recorded to disk within 30 seconds, but ensure noth-

ing about the order in which updates reach disk nor about the atomicity of multi-part operations.

However, this window of vulnerability and weak semantics allow for increased performance as: (i)

the operating system can return to the application immediately after buffering the write, (ii) writes

2. The specific structures used to store and organize meta-data vary considerably between file systems. For
example, some file systems maintain most of their meta-data in special files which can grow in size like
user data files [Rosenblum and Ousterhout, 1992][Hitz et al., 1995]. Other systems maintain fixed size
regions of meta-data. [McKusick et al., 1984]. There must always be some meta-data located in a fixed
location where the file system can begin reading to recover after a system crash in order to boot strap
crash recovery. However some file systems fix the location of all of their meta-data [McKusick et al.,
1984], while others allow all but the essential boot-strapping information to be allocated anywhere on
disk [Rosenblum and Ousterhout, 1992][Hitz et al., 1995].

32

may be deleted or overwritten while waiting to go to disk thus completely avoiding the disk trans-

fer and (iii) writes to user data may be written to disk in any order allowing optimization of disk

head movement.

3.2. Early File Systems

The original UNIX file system is a typical example of an early file system design. UNIX, like

many other systems, manages disk storage with a linked list of free blocks [Ritchie and Thompson,

1974][Thompson, 1978]. When the system needs to allocate a new file block, it simply removes

the first block on the free list. Once a block is allocated a position on disk all future modifications

(and reads) to that block are directed to the same disk location. For this reason, this type of system

is referred to as an update-in-place system.

Initially, the system’s free list can be ordered optimally with respect to the actual locations on

disk (i.e. blocks next to each other in the list are next to each other on disk). However, over time,

the list is randomized as blocks are placed back on the free list when they are no longer needed

(e.g. due to file deletions). In general, blocks need not be deleted in the same order they are cre-

ated. The disk is treated as a random-access heap. As a result, related data becomes increasingly

fragmented or scattered across the disk. If a fragmented file is accessed sequentially, seek and

rotational delay is required between each block. This approach has poor performance for both read

and write traffic because performance scales with mechanical access latency not with disk band-

width. I address solutions to this problem in later sections.

In addition, an update-in-place system can become corrupted during a system failure. As I dis-

cussed in Section 3.1, some updates require multiple disk writes and a failure that occurs between

such related updates may leave the system in an inconsistent state. In an update-in-place system,

such inconsistencies can be located anywhere on disk because each write is directed to its previ-

33

ously allocated position. In addition, because each write is placed on top of the previous version of

the data, if a failure causes a write to be interrupted, the data could be left in an inconsistent state

(partially old and partially new).

Fsck is a crash recovery procedure developed to address some of these problems [Kowalski,

1978]. It is based on an understanding of how operations are implemented and specifically it

depends on multi-part operations being performed synchronously and in an specified order. For

example, creating a new file requires several separate updates: to the freelist, to the file’s parent

directory, to a special file descriptor called an i-node and to the file’s data blocks. Fsck relies on

knowing the exact order on these operations. First, the freelist is changed to allocate space for the

new file. Second, an i-node is assigned to the file and is modified to point the allocated blocks.

Third, the file’s data is written into the allocated blocks. Finally, an entry for the file is added to its

parent directory. Each update must be synchronously written to disk before the next one may

occur. These small synchronous updates limit write bandwidth because they are unable to hide

mechanical access latency.

After a crash, fsck scans the entire disk, locating and repairing operations that did not com-

plete cleanly and atomically. It detects inconsistencies such as disk blocks that belong neither to a

file nor to the freelist and files that are not pointed to by any directory entry. Fsck repairs these

inconsistencies by returning to the free list any allocated blocks not pointed to by an inode and

placing any files not pointed to by a directory into a special “lost and found” directory. While this

returns the file system’s internal structure to a consistent state, it can lose user data written to disk

and may require the user to manually recover a file from the lost and found directory. In addition,

because this recovery procedure scans the entire disk, crash recovery time scales with total storage

capacity. This approach becomes increasingly inefficient in the presence of rapidly increasing

34

storage capacities. Finally, it does not solve the problem of partial writes corrupting existing data

— even system meta-data.

In the next sections, I describe how file systems have evolved to improve performance during

normal operation and to reduce the time required for crash recovery on modern large disks.

3.3. The Fast File System

The Fast File System (FFS), introduced in 1984, makes several important performance

improvements to the update-in-place model [McKusick et al., 1984]. First, it increases the block

size so that the mechanical access latency for each block is amortized over a larger transfer.1 Sec-

ond, it further reduces seek and rotational delay by dividing the disk into sections called cylinder

groups and allocating semantically related data to nearby blocks in the same cylinder group. FFS

continued to use fsck for crash recovery.

FFS can be classified as a read-optimized file system. Most read-optimized file systems

attempt to locate files within the same directory together and to place each file sequentially. Rather

than writing to the first block on the free list or to the free space closest to the current disk head

position, FFS incurs additional seek and rotational delay for each write in order to place the data in

a specifically chosen location on disk. The lower write performance is intended as an investment

in higher read performance; thus FFS can be classified as a read-optimized file system.

When a block that has not yet been allocated to a disk location is written, FFS first chooses the

cylinder group in which it would like the block to be placed. If this is the first block in the file to be

allocated, FFS places it in the first free block in the same cylinder group as its parent directory. As

1. FFS combined this larger block size with the ability to allocate fragments of blocks to small files or to the
last block in a larger file. This allowed larger transfer sizes without a corresponding increase in internal
fragmentation.

35

additional blocks in the file are allocated, it places them in the same cylinder in a free block that is

rotationally close to the previous block in the file.1

If the desired cylinder is full, FFS looks for free space in the other cylinders of the same cylin-

der group. If the entire cylinder group is full, another group is chosen by way of a quadratic hash

on the original cylinder group number. Finally, if this hash finds another full cylinder group, FFS

resorts to an exhaustive search of all the cylinder groups.

This search strategy has some important performance ramifications as pointed out in [Smith

and Seltzer, 1994]. Cylinder groups tend to fill from beginning to end - resulting in a higher den-

sity of free space at the end of the group. Files tend to become fragmented as they fill gaps left by

earlier deletions — their early blocks are located at the beginning of the group and their later

blocks at the end. Small files tend to become especially spread out since they often do not have

enough blocks to reach the contiguous runs of free blocks that are still available at the end of the

group. Studies of actual file layout in FFS have shown a significant degree of fragmentation, espe-

cially at higher disk utilizations [Smith and Seltzer, 1994]. In addition, since blocks do not move

once allocated, files that are created during periods of high disk utilization stay fragmented even if

the disk utilization is later reduced.

Since the original FFS design, several techniques have been developed to reduce fragmenta-

tion. One version of BSD uses a reallocation algorithm that attempts to relocate2 logically sequen-

tial blocks within the same file together on disk [BSD4.4-Lite Source, 1994]. This reduces the

1. There is an exception to this rule for large files. When a file exceeds 48 KB and at every megabyte there
after, FFS forces the selection of a new cylinder group. This is done to prevent a large file from occupy-
ing an entire cylinder group forcing all other files in that same directory to be scattered to other cylinder
groups.

2. When a new block is added to a file, this algorithm will attempt to relocate the previous blocks (up to a
maximum chunk size) to an area of free space large enough to accommodate both the old blocks and the
new one [Smith, 1999].

36

fragmentation of individual files and therefore improves the performance of sequential read and

write access to those files [Smith and Seltzer, 1996]. Ganger and Kaashoek reduce the fragmenta-

tion of whole directories by grouping small files that belong to the same parent directory together

on disk. This can be beneficial especially for common utilities, like grep, that tend to operate on

many files in the same directory [Ganger and Kaashoek, 1997]. Both of these techniques are con-

sistent with the stated goal of FFS allocation policies which is to group the semantic units of files

and directories together on disk. However, we note that the logical namespace of the directory

hierarchy is not necessarily matched by the read patterns in a real workload. For example, the

object files from several directories may be read together to produce an executable and the execut-

able itself may be read out of order to avoid error handling code.

3.4. Write-ahead Logging File Systems

To address the crash recovery problems of update-in-place systems, file system designers bor-

rowed a technique from databases called write-ahead logging. Write-ahead logging file systems

[Hagmann, 1987] [Chutani et al., 1992] [Berkeley Trace Repository, 1999] [Custer, 1994] [Veri-

tas, 1995] [Sweeney et al., 1996] record updates to a log. These updates are eventually propagated

into a traditional file system organization much like that of FFS, but they become durable as soon

as the transaction of which they are a part is completely written or committed to the log. Once

propagated, the log entries can be re-used. Typically, systems periodically force all committed

data in the log to prevent the log from growing arbitrarily long. This is called checkpointing.

In the event of a system crash, the system reads the log and completes any unfinished process-

ing for transactions committed in the log. This combination of checkpointing and roll-forward pro-

cessing is like that found in database systems [Mohan et al., 1992]. With write-ahead logging, the

time to recover from a crash is proportional to the size of the log and the duration between check-

37

points rather than with the size of the total storage. Thus, write-ahead logging, unlike systems

using fsck, remains efficient even as storage systems increase in size at a rate of 60% per year

(Section 2.2). In addition, replaying the log after a crash can repair a block corrupted by a partial

write.

Most write-ahead logging systems place only meta-data operations in the log. Writes of ordi-

nary file data are still sent asynchronously to the traditional update-in-place storage. Thus, write-

ahead logging avoids the predefined sequences of small synchronous meta-data updates, but it

does not extend the consistency benefits to user data.

Using a log has another somewhat surprising effect— despite having to write everything twice

(first to the log and then to the final storage location), write-ahead logging can actually improve

write performance. The writes into the log are more efficient because they can be delayed and

batched without loss of atomicity. By varying the amount of time between periodic log writes, the

risk of losing the most recent updates can be weighed against the performance benefits of batch-

ing. Many database systems invest in a separate disk for the log so that seek delay can be even fur-

ther reduced by ensuring that the disk head is left in the track to which the next log write will be

directed. Copying updates into the traditional file system organization can also be made more effi-

cient. Once the update is safely recorded in the log, these second propagation writes can be safely

delayed and rearranged into an order that minimizes seek and rotational delay [Seltzer et al., 1990]

[Jacobson and Wilkes, 1991]. The read performance of write-ahead logging systems is similar to

that of update-in-place systems like FFS because the final layout strategy is the same.

3.5. The Log-structured File System

The log-structured file system (LFS) took the logging approach one step further by avoiding

the second propagation writes and treating the log as the entire file system [Rosenblum, 1992]

38

[Rosenblum, 1992]. In this way, both file system structures and user data can benefit from the

recovery properties of the log. Figure 3-2 illustrates the LFS architecture.

In an LFS, all writes, regardless of whether they are the first write of a new piece of data or an

overwrite of existing data, are batched to the end of the log. Holes are produced when a block of

data is deleted or overwritten. On an overwrite, the new contents are placed at the tail of the log —

instead of being updated in place as with earlier file systems. The previous contents of such a

block are still located in their original location, but they are no longer a part of the active file sys-

tem.

In the common case, writes are batched to the log in large units called segments. The disk is

divided into segment-sized chunks; a newly written segment can be placed in any unused position

regardless of the location of the previously written segments. In the original LFS design, the seg-

ment size was chosen to be large enough that the transfer of a single segment was sufficient to

FIGURE 3-2. Illustration of the Log-structured File System
Architecture.

New writes create holes in the log:

Cleaner copies live blocks to a new segment:

The Log-structured File System

39

make mechanical access delay small compared to the transfer time. (I will discuss other factors

that influence the choice of segment size in Chapter 5.)

Writing segments amortizes seek and rotational delay and allows write performance to scale

with disk bandwidth rather than with mechanical access latency. However, LFS is not always able

to write in units of full segments. If an application requests that data be sent synchronously to disk

(i.e. the sync or fsync system calls), LFS must send whatever data has accumulated in memory

directly to disk even if only a partial segment must be written.

Although LFS treats the disk logically as an append-only log, it will, of course, over time, run

out of free space for new log writes. Therefore, the LFS architecture includes a garbage collection

process called the cleaner. It is the cleaner’s job to compact useful data. The cleaner reads partially

empty segments (i.e. segments containing both holes and live data which has not been overwritten

or deleted) and rewrites only the live data to the tail of the log. Once this has been done, a segment

can be declared free and is then available for future segment writes.1

LFS has many advantages. LFS provides batching of writes, efficient crash recovery and even

extends the benefits of logging to user data as well as file system meta-data. A principal concern

with the LFS architecture has been the cleaning overhead. Studies have shown that in most envi-

ronments there is sufficient idle time to accomplish cleaning in the background [Blackwell et al.,

1995][Gibson, 1992][Gribble et al., 1998]. However, when insufficient idle time exists, cleaning

overhead can delay both reads and writes. These delays are particularly significant in the case of

random updates to a full disk. Seltzer et al. found that cleaning overhead led to dramatically lower

performance for a transaction processing workload at high disk utilizations [Seltzer et al., 1993]

1. The fact that new versions of data blocks do not immediately replace the old means that there is the pos-
sibility of easily integrating an archival system into this architecture. The cleaner could be modified to
rewrite live blocks to the end of the log and dead blocks into the archival system.

40

[Seltzer and Smith, 1995]. Despite the numerous benefits of the LFS architecture, its dramatically

lower performance for some workloads led many to question the wisdom of adopting LFS.

In addition, there is the question of read performance. The designers of the log-structured file

system argued that LFS could still offer excellent read performance [Rosenblum and Ousterhout,

1992]. They hypothesized that since data is initially written to disk in large contiguous chunks, the

layout would reflect the temporal locality of the current update stream. If read patterns followed

write patterns, this layout would also perform well for reads.

However, the read performance of write-optimized systems has been largely unexamined.

Studies of LFS read performance have indicated little beyond its ability to efficiently read files

sequentially that were also written sequentially [Rosenblum, 1992] [Seltzer et al., 1993]. LFS read

performance has not been evaluated on a wide range of workloads and there have been no detailed

studies to quantify the impact of garbage collection on read performance.

Garbage collection disrupts the initial temporal locality by grouping pieces of unrelated seg-

ments together. The cleaner groups of partially empty segments and rewrites the live data from

them into new full segments. Thus, depending on which segments are chosen to be cleaned

together, cleaning can disturb the write locality inherent in the original log by grouping together

data from potentially unrelated segments.

In addition, read patterns do not always follow write patterns. Related data that is incremen-

tally modified may become dispersed over the disk. For example, in a software development

workload, actively modified source files migrate to the tail of the log, but during each compilation

they are read at the same time as unmodified source files located earlier in the log. Multiplexing

the log amongst multiple clients, users, and applications can also diminish the efficacy of temporal

locality by grouping data from many streams together.

41

3.6. Write-Anywhere File Systems

Unlike earlier file systems, LFS allows disk layout to be determined by what is convenient for

writes. It does not directly attempt to group related data into cylinder groups, but rather allows data

to be placed in any segment on disk. Current trends in storage systems are towards write-anywhere

designs that take the write optimization of LFS one step further [Chao et al., 1992] [English and

Stepanov, 1992] [Hitz et al., 1995] [Wang et al., 1999].

These write-anywhere systems use intimate knowledge of the storage system, like current disk

head position or the number of free blocks in each RAID stripe, to write new data to the most

readily accessible free space. Like LFS, write-anywhere systems benefit from large extents of free

space. Unlike LFS, they do not require garbage collection to generate extents of free space for new

writes. They can write into any available free space regardless of its size or location.

Write-anywhere systems vary in how they handle crash recovery. WAFL has one of the most

interesting approaches [Hitz et al., 1995]. It maintains read-only copies of the entire file system

called snapshots. Each snapshot is a completely self-consistent image of the file system to which

the system could revert in the event of a crash. WAFL relies on NVRAM to protect any data writ-

ten between snapshots.1 The space required to maintain snapshots scales with the amount of

update activity because snapshots use a copy-on-write technique in which only the data that

changes between snapshots must be duplicated. When data is overwritten, it is placed in a free

location and the previous contents continue to be accessible through the previous snapshot.

A new snapshot can be created by copying only the root node of the file system tree to a well-

known location on disk. All other blocks in the snapshot can be reached from there. Between snap-

1. WAFL is specific to NFS file server appliances produced by Network Appliance Corporation. In this
environment, the presence of NVRAM can be guaranteed.

42

shots, the system copies those nodes in the tree that are modified by each update operation. Previ-

ous snapshots continue to point to the old copies and snapshots created in the future will point to

the new copy.

In the Network Appliance implementation, snapshots are taken frequently (e.g. every 30 sec-

onds) and up to 20 different snapshots may be available simultaneously. Disk blocks do not

become available for reuse until all the snapshots that refer to them have been deleted. This can

create problems when disk space is at a premium. For example, if a large file is deleted, the space

it occupies will not become available until all the snapshots that reference it have been deleted.

However, snapshots also allow users to recover accidentally deleted files or compare current files

to previous version.

Loge and Mime accomplish write-anywhere optimizations at the disk driver level without the

knowledge of the file system [English and Stepanov, 1992] [Chao et al., 1992]. The main data

structure in these systems maps the block addresses used by the file system to the block’s actual

storage location. Periodically, Loge and Mime write a checkpoint containing this map and a list of

the blocks that are currently free. A header is written with each block identifying its contents and

write time. In the event of a crash, Mime begins with the most recent checkpoint and examines

every free block indicated by the checkpoint to see if it had been subsequently written1. Thus, the

recovery time is proportional to the amount of free space reserved on disk rather than the time

between checkpoints.

One important parameter for a write-anywhere design is the algorithm used to search for a

convenient free space for writing. English and Stepanov describe a problem with simply choosing

the closest free space in either direction from the disk head [English and Stepanov, 1992]. This

1. Loge actually scanned the entire disk to recover the indirection map.

43

minimizes seek distance in the short term, but can trap the disk head in a small area with a few

fragmented, nearby free spaces while never reaching larger contiguous regions of free space that

are further away. To avoid this problem, Wang suggests searching the disk for free space in one

direction completely, switching directions when the edge of the disk is reached [Wang et al.,

1999]. The WAFL allocation policies are similar in flavor, but focus on filling in multiple holes in

the same RAID stripe rather than writing to free spaces near the disk head on a single disk [Hitz et

al., 1995].

While providing high write performance, the read performance of these systems has been

largely unexamined. Data that is written together may land in adjacent free spaces when they are

available, but the layout does not reflect the temporal locality of the write stream as directly as in

LFS. At higher disk utilizations, it becomes more difficult to locate adjacent free spaces and even

data written together may become scattered over the disk.

3.7. The Effect of Caching and Prefetching

Caching and prefetching are two common techniques used to hide storage system latency for

reads. As such, they can change the character of read traffic and alter the balance between read and

write traffic.

Caching improves read performance by retaining recently read data in memory resulting in

quicker access if it is read again before being replaced. Caching is limited by the amount of mem-

ory devoted to the buffer cache relative to the amount of data stored in the file system and the cur-

rent workload’s working set. LRU (“Least Recently Used”) is the most commonly used cache

replacement strategy, although there are others like FIFO (“First In, First Out”) which benefit

some specific workloads. Other systems improve cache efficiency by allowing applications to give

hints about whether specific blocks read should be retained in the cache [Cao et al., 1995].

44

Caches can significantly reduce the amount of read traffic to disk. Roselli captured file system

traces in an academic environment and found that reads vastly outnumbered writes at the system

call level, but after the cache, disk traffic contained twice as many writes as reads [Roselli, 1998].

However, that study as well as others have documented that larger caches offer diminishing

returns [Baker et al., 1991][Roselli, 1998]. There is very little that can be done to avoid cache

misses for data that has not been accessed in some time. Once the current working set has been

accommodated, there is less locality in the remaining access stream. In addition, caching offers lit-

tle benefit to streaming read access patterns.

The designers of write-optimized systems have at times argued that large caches could absorb

a sufficiently large percentage of the read traffic that disk reads would become a rare event for

which there would be no need to optimize [Rosenblum and Ousterhout, 1992]. This argument was

especially compelling at a time when the price and performance of memory were improving more

rapidly than for disk. However, as I discussed in Chapter 2, this is no longer the case. Coupled

with the diminishing returns from larger caches, caches do not offer a sufficient replacement for a

disk layout strategy that effectively supports read accesses.

Another approach for improving read performance is prefetching. Prefetching anticipates

future accesses and tries to fetch data from disk before it is requested. Sequential look-ahead is one

of the simplest and most common prefetching strategies. When a block is read, the next several

blocks that follow the block sequentially in the same file are also fetched. Unfortunately, this lim-

its the maximum prefetch benefit to the size of the file. Griffeon and Appleton showed how to

prefetch multiple files by dynamically building a graph in which files are nodes and edges repre-

sent subsequent accesses. They prefetch files that follow the current file with a probability greater

than a given threshold [Griffioen and Appleton, 1994]. Other systems provide a mechanism for

applications to give hints about which blocks to prefetch (those they are likely to use in the future)

45

[Patterson, 1995]. Chang and Gibson include an additional thread in each application to execute

speculatively ahead of the main thread in order to generate prefetching requests [Chang and Gib-

son, 1999].

In order to be effective, prefetching must be started far enough in advance of the time data

needed by the application for the data to be read from disk. This is not always possible; worse, the

amount of advance warning needed, relative to application execution time, increases as processors

become faster. Prefetching is also limited by the amount of additional disk bandwidth that is avail-

able after the application requests have been satisfied. Prefetching can be successful at hiding

latency from the application, but it does not decrease the demands on the disk and can in fact sig-

nificantly increase them. (No additional bandwidth would be required if the prefetching algorithm

was always able to correctly predict application demands. However, mistaken prefetching requests

take both disk bandwidth and space in the cache away from legitimate requests.) Without careful

layout, the disk may be too busy to prefetch data before it is needed, especially since file requests

tend to be bursty [Baker et al., 1991] [Gribble et al., 1998].

Caching and prefetching complement, but do not replace, effective disk layout. Caching

relieves the disk of repeated requests for the same items and effective disk layout can capture the

locality of data that is too large to be captured by a fixed sized cache. Effective disk layout

improves the efficacy of prefetching by reducing the lag time between the prefetching request and

the return of the data from disk.

3.8. Conclusions

File system goals include providing reliable access to data across system failures, high perfor-

mance write access and high performance read access. Unfortunately, these can be conflicting

goals. Minimizing data loss requires frequently writing data to disk which can be costly due to the

46

large performance gap between memory and disk. Performance can be improved with data layout

that minimizes seek and rotational delay. For write access, this can be accomplished by batching

many writes together or by writing to readily accessible free space. However, for read access, this

requires grouping related data together on disk. Thus, write optimizations that write to the most

convenient location can work at cross purposes to the read optimizations that attempt to group

related data. Caching and prefetching are important techniques for improving read performance,

which complement, but do not replace disk layout that effectively clusters related data for efficient

read access.

Over time, various file system architectures have balanced these competing demands in differ-

ent ways. So far, no single approach has been shown to be good in all dimensions. FFS and write-

ahead logging systems incur higher write cost to arrange data semantically to improve read perfor-

mance, even though read patterns do not always follow this organization. LFS and write-anywhere

systems achieve high write performance, but can scatter related data lowering read performance.

In the next chapter, I will further discuss how workload variations affect the trade-off between

these file system designs and why adaptive methods offer a natural approach to capturing the

strengths of these various systems in one single file system.

47

4Workload Characteristics
Affecting File System
Performance

In Chapter 2, I discussed major technology trends affecting file system design. In Chapter 3, I

discussed a variety of existing file system architectures. In this chapter, I discuss how the compar-

ison between them is highly dependent on workload characteristics. I describe major characteris-

tics by which file system workloads can be categorized. I discuss how variations in these

characteristics can affect file system performance and the impact they can have on the trade-off

between the major file system paradigms. I conclude that each file system paradigm described in

Chapter 3 has regions of good performance and other regions of poor performance depending on

the workload and the hardware available to the system. Adaptive methods offer the potential to

develop a file system that combines the best features of each system.

In Section 4.1, I describe several specific workloads and how they differ. In Section 4.2, I dis-

cuss specific axes along which all workloads vary and how those variations affect the performance

of various file system designs.

4.1. Characteristics of Several Important Workloads

Table 4-1 gives a high-level characterization of five important workloads that ideally should

be well supported by any file system design: multimedia, software development, transaction pro-

cessing, decision support and scientific simulation. Of course, there can be great variation within

each category. For example, one scientific simulation may read huge data input files and produce

small output files while another may read small input files and produce large output files. How-

48

ever, Table 4-1 illustrates that even at a high level various applications produce very different

access patterns.

Multimedia workloads are characterized by steady, sequential access to large files. Video and

audio playback require constant data rates to avoid interrupting the presentation to the user. Files

are often large and read sequentially in their entirety. Files are often written once and then read

many times.

Software development is characterized by the production of many intermediate source files

that are frequently updated and many repeatedly overwritten. Source modifications are inter-

spersed with compilations; each compile produces object files which are overwritten whenever the

code is modified. Often, the directory groupings of files are helpful in identifying related files.

Temporal locality is less helpful as frequently modified files will move away from related, but

unchanging files.

Transaction processing is characterized by frequent, random accesses to large files. There is

typically some locality of access to the high levels of indices for the data. Transaction processing

is often a mission critical application. Constant availability is important as well as the need for fre-

quent data commits.

Decision support workloads are characterized by routine data insertions and read access to a

large portion of accumulated data. In a typical environment, business records, such as the most

recent updates in a transaction processing system, are periodically inserted into an historical repos-

itory. Ad-hoc queries are run on vast repositories of this historical data to aid in the making of

business decisions. Read access patterns can be unpredictable as decision makers look for new

ways to view their data to yield insights into successful business practices. If the same types of

questions are frequently repeated, indices may be created to efficiently support the resulting access

49

TA
B

LE
 4

-1
. C

om
m

on
 C

ha
ra

ct
er

is
tic

s
of

 V
ar

io
us

 W
or

kl
oa

ds

W
or

kl
oa

d
W

ri
te

 O
rd

er
W

ri
te

L

oc
al

it
y

R
ea

d
O

rd
er

R
ea

d
L

oc
al

it
y

R
ea

d
an

d
W

ri
te

In

te
ra

ct
io

n
R

eq
ue

st
 R

at
e

Si
ze

D
at

a
L

if
et

im
e

M
ul

tim
ed

ia
w

ho
le

 fi
le

se
qu

en
tia

l

no
w

ho
le

 fi
le

se
qu

en
tia

l

no st
re

am
in

g

w
rit

e
on

ce

re
ad

 m
an

y

su
st

ai
ne

d
bi

g
fi

le
s

lo
ng

So
ftw

ar
e

D
ev

el
op

m
en

t
se

qu
en

tia
l f

or

ex
ec

ut
ab

le
s;

 lo
ca

l
up

da
te

s
in

 c
od

e

ye
s

w
ho

le
 fi

le

se
qu

en
tia

l;
gr

ou
ps

 o
f

re
la

te
d

fi
le

s

ye
s

in
te

rl
ea

ve
d

bu
rs

ty
bi

m
od

al

m
an

y
sm

al
l

fil
es

; f
ew

la

rg
e

fi
le

s

bi
m

od
al

m

an
y

sh
or

t;
a

fe
w

 lo
ng

Tr
an

sa
ct

io
n

Pr
oc

es
si

ng
ra

nd
om

no
ra

nd
om

no
 fo

r d
at

a;

ye
s

fo
r i

nd
i-

ce
s

in
te

rl
ea

ve
d

su
st

ai
ne

d
va

rie
s

va
rie

s

D
ec

is
io

n
Su

p-
po

rt
up

da
te

/a
pp

en
d

no
ra

nd
om

, p
at

-
te

rn
s

fo
r c

om
-

m
on

 q
ue

ri
es

no
 d

at
a;

 so
m

e
fo

r i
nd

ic
es

w
rit

e
on

ce
,

re
ad

 m
an

y

va
rie

s
hu

ge
lo

ng

Sc
ie

nt
ifi

c
Si

m
ul

at
io

n
se

qu
en

tia
l o

ut
pu

t
no

va
rie

s;
 o

fte
n

se
qu

en
tia

l

va
rie

s
w

rit
e

on
ce

,
re

ad
 o

nc
e

va
rie

s
bi

g
fi

le
s

m
an

y
lo

ng
;

sh
or

t f
or

re

pe
at

ed

ex
pe

ri
m

en
ts

50

patterns. The historical nature of the data repository makes deletions rare and therefore the amount

of data collected can grow to be extremely large.

Scientific simulations, such as climate modeling, are similar to decision support in that they

process huge repositories of collected data. Many scientific simulations also produce large output

files detailing the processing performed and the results computed. Both input and output is fre-

quently in sequential streams— predictable but with little locality. Repeated, unsuccessful experi-

ments overwrite existing results. Input data and the results of successful experiments are likely to

be saved indefinitely.

4.2. Workload Characteristics

Section 4.1 described the characteristics of several specific workloads at a high-level. In this

section, I further characterize how workloads differ in ways relevant to file system design. I dis-

cuss workload characteristics along the following axes: write pattern, read pattern, read and write

mixture, rate of data access, data size and distribution, disk utilization, data lifetime, frequency of

data commit and availability requirements.

4.2.1. Write patterns

4.2.1.1. Order of Write Accesses

The sequence of writes to a file system may or may not follow the semantic units of files and

directories. For example, files may tend to be written sequentially in their entirety, sequentially to

only a portion of the file or nonsequentially. Subsequent writes may be to the same file or to

another file in the same directory. If the sequence of writes does not follow the directory hierarchy,

then the writes may be random or there may be other patterns that are predictable even though they

do not follow the semantic units of files or directories.

51

Write-optimized file systems are not sensitive to write order because regardless of the patterns

they direct all new writes to a convenient location either through batching in LFS or by choosing a

free location near the disk head in write-anywhere systems. However, read-optimized file systems,

like FFS, are sensitive to write order because they choose a disk location for a block based on the

directory and file to which it belongs and on its offset into the file. Systems like this are willing to

incur additional seek and rotational delay for write patterns that do not match the desired organiza-

tion in order to sort the data based on its semantic properties.

4.2.1.2. Temporal Locality of Write Accesses

A range of update patterns are possible: there may be a high degree of locality to the set of data

being actively updated or updates may be directed with equal probability to any block on disk.

Read-optimized systems are more sensitive to write pattern than to write locality. Even a write

pattern with a high degree of locality will cause additional seek and rotational delay if it does not

match the semantic organization of data on disk. Read-optimized systems are sensitive to the write

locality to the degree to which it contributes to the fragmentation of free space as disk blocks are

allocated and freed over time.

Write-optimized systems, which are insensitive to write order, are highly sensitive to the

degree of locality in the write stream. In the case of LFS, increasing locality lowers garbage col-

lection overhead by decreasing the number of segments that accumulate free space. In the case of

write-anywhere systems, increasing locality causes there to be more free space available in one

area of the disk. This makes it less expensive to find free space when the disk head is in that area.

52

4.2.2. Read Patterns

4.2.2.1. Order of Read Accesses

Like the write pattern, the sequence of reads may or may not follow the semantic units of files

and directories. Even if the sequence of reads does not follow the directory hierarchy, reads may

follow other patterns predictable patterns. Read patterns may or may not match write patterns.

All systems are sensitive to read order. Read performance is higher when read patterns match

the system’s disk layout policy. Read-optimized systems will perform well when read patterns fol-

low the units of files and directories. Write-optimized systems will perform well when read pat-

terns follow write patterns. Thus, no single system is good for all read patterns.

4.2.2.2. Locality of Read Accesses

There may be a high degree of locality to the set of data being actively read or reads may be

directed with equal probability to any block on disk. A cache is more effective for read traffic with

a high degree of locality.

4.2.3. Mixture of Reads and Writes

4.2.3.1. Ratio of Reads and Writes

The ratio of reads to writes, especially disk reads and disk writes, determines whether it makes

sense to optimize one type of access at the expense of another. Where reads are more common

than writes and read patterns are statically predictable, it is appropriate to incur additional seek and

rotationally delay to write data near the data with which it will be read. Where writes are more

common than reads, it is appropriate to minimize write cost by placing data into convenient loca-

tions which minimizes write cost. The mixture of reads to writes can also vary over different sub-

sets of data within the same file system.

53

4.2.3.2. Interleaving of Reads and Writes

If a given workload consists of well defined phases that are either read or write dominated then

it is easier to reason about how each phase affects the other. As reads and writes are interleaved at

a finer granularity, they can affect each other in interesting ways. For example, writes in log-based

systems are most efficient when the disk head is left sitting at the tail of the log ready for the next

batch of writes. Read traffic can move the head resulting in additional seek and rotational delay to

locate free space for the next write. Many write-ahead logging systems deal with this situation by

dedicating a separate disk exclusively to the log (obviously this has higher cost). LFS, although it

would derive a similar benefit from a separate disk, deals with this by batching many writes

together in order to amortize seek and rotational delay. Interleaving of reads and writes also has an

impact on read-optimized systems; these systems have better performance when the stream of both

reads and writes displays significant semantic locality (i.e. data from the same files and directories

is being read and updated at the same time).

4.2.4. Rate of Data Access

File system workloads that alternate between idle periods and periods of intense activity have

been well documented [Ruemmler and Wilkes, 1993][Gribble et al., 1998]. In other environments,

the rate of data access may be more steady (e.g. multimedia workloads, transaction processing

workloads). Riedel and Gibson document user dissatisfaction with lightly loaded servers because

of poor burst behavior [Riedel and Gibson, 1996]. Therefore, if frequent idle time exists, it is ben-

eficial to perform background tasks that prepare the systems to provide peak performance during

periods of heavy load. Systems can be designed to take advantage of bursty traffic by delaying

tasks such as garbage collection and data reorganization to idle periods [Rosenblum and Ouster-

hout, 1992][Blackwell et al., 1995] [Golding et al., 1995]. When such activities are accomplished

in idle time, users perceive no performance degradation as a result. However, for other workloads

54

that demand long-term sustained performance systems that do not defer work to idle time may pro-

vide more consistent service.

4.2.5. Data Size and Distribution

Read-optimized systems are particularly sensitive to how data is distributed into semantic

units (i.e. the distribution of file sizes and directory sizes). In general, semantic clustering is less

effective when the semantic units are either too small or too big for effective clustering. For exam-

ple, if all the data in the file system is in a single directory, grouping data by directory is ineffec-

tual. Write-optimized systems are less sensitive to these distributions because they make no

attempt to actively cluster semantic units.

4.2.6. Disk Utilization

All systems are sensitive to the overall data size in relationship to the storage capacity of the

system. In LFS, cleaning performance degrades dramatically as the disk approaches full utiliza-

tion. The cleaner must be run more frequently to collect more scattered log holes; increased disk

utilization decreases the chances that the cleaning can be deferred until the next idle period. Simi-

larly, at higher disk utilizations, write-anywhere systems have lower write performance because

they must search farther to find free space and lower read performance because data written

together may become more scattered. The performance of FFS also degrades as the disk fills,

although somewhat more gracefully. With fewer free slots, FFS is less likely to be able to allocate

a new block near other related blocks in the same file or directory. Furthermore, data allocated in

this way will remain fragmented even if the disk utilization later drops.

55

4.2.7. Data Lifetime

All systems benefit from data that is overwritten or deleted quickly enough that old versions

need not be sent to disk. In many systems, the majority of data created is overwritten or deleted

within a few minutes, but the majority of data alive at any one point may be months old [Baker et

al., 1991][Ruemmler and Wilkes, 1993][Roselli, 1998].

Once data has reached disk, frequent, non-localized, deletes cause fragmentation of existing

allocation units. Free space produced by deletes are available for new allocations in FFS and write-

anywhere systems. LFS however must first compact free space with garbage collection.

In addition, data that lives longer may be a better candidate for data reorganization. In many

environments, data that has lived for a long time becomes less likely to be deleted and without

reorganization, it will show the effects of poor layout every time it is accessed. Also, data that lives

longer has more opportunities to be reorganized and more information can be collected about the

way it is accessed in order to reorganize it effectively.

4.2.8. Frequency of Data Commit

All systems are sensitive to the frequency with which sync operations force data to be commit-

ted to stable storage. This frequency determines how long data can be buffered in memory before

it is written. Increasing this frequency decreases the amount of data that is never written to disk

because it is overwritten or deleted in the write buffer. Write-optimized systems are especially sen-

sitive to this frequency because they rely on batching of writes to decrease write cost.

4.2.9. Availability Requirements

Workloads vary in the amount of system downtime they can tolerate. As I discussed in

Chapter 3, update-in-place systems such as FFS are susceptible to longer downtimes after a system

56

crash due to the need to scan the entire disk for inconsistencies. Since the time required to scan the

disk is proportional to the disk’s capacity, increasing disk capacities have significantly increased

the recovery time and thus decreased the effective availability of FFS systems. Both LFS and

write-ahead logging systems only need to process the most recently written data on disk and so the

time for crash recovery is dependent on the time since the last checkpoint and not on total file sys-

tem capacity.

4.3. Conclusions

In the presence of rapidly changing technology and diverse workloads, it is difficult to con-

clude that one file system paradigm is better than another. The comparison depends on too many

factors like the ratio of read traffic to write traffic, disk characteristics, the amount of idle time in

the workload, the presence of special hardware support like NVRAM, etc. Each of the file system

paradigms has regions of good performance and other regions of poor performance. For example,

LFS performs well relative to traditional update-in-place or write-ahead logging systems when

there are frequent small disk writes, where disk writes dominate reads, where disk activity is

bursty, where there is ample free disk space, and with RAIDs. However, traditional file systems

perform well relative to LFS when reads are statically predictable, where reads dominate writes

and where sustained disk performance is important.

As a result, the best paradigm for building file systems remains a topic of active debate

[McVoy and Kleiman, 1991][Rosenblum and Ousterhout, 1992][Seltzer et al., 1993][Seltzer et al.,

1995][Ousterhout, 1995a][Ousterhout, 1995b][Seltzer and Smith, 1995][Ouster-

hout,1995c][Ganger and Kaashoek, 1997][Sweeney et al., 1996]. Adaptive methods offer the

potential to develop a file system that combines the best features of each system. Adaptive method

are a natural approach to offering consistently high performance in the face of varied workloads

57

and rapidly changing technology. In the rest of this dissertation, I demonstrate simple adaptive

algorithms that can significantly improve the way file systems balance the varied and often com-

peting demands of their environment. I will focus on adaptive modification to the log-structured

file system as a way of building a system that is good for both read and write traffic.

58

5 Providing Robust File System
Write Performance In Log-
Structured File Systems

In the first four chapters, I have motivated the need for adaptive file system services to provide

high performance in the presence of changing technology and varied workloads. In this chapter, I

focus on write performance and present adaptive extensions to the log-structured file system

(LFS), a file system whose performance is known to be highly dependent on workload. I show

how its performance is also highly dependent on variations in disk performance.

5.1. Motivation

Recall that in an LFS, all writes, regardless of whether they are the first write of a new piece of

data or an overwrite of existing data, are batched to the end of the log in units called segments. The

disk is divided into segment size chunks and each new batch of writes can be placed in any free

disk segment regardless of the location of last segment written.

Logically, LFS treats the disk as an append-only log. However, over time, it runs out of free

segments for new log writes. The LFS architecture includes a garbage collection process called the

cleaner. Free blocks in previously written segments or “holes” are produced when data is deleted

or rewritten and the new data placed at the tail of the log. It is the cleaner’s job to re-collect the free

space that has accumulated in these holes. The cleaner reads partially empty segments and rewrites

just their live data to the tail of the log. Once this has been done, a segment can be declared free

and it is then available for future segment writes.

59

The log-structured file system has many desirable characteristics relative to other existing file

system designs. LFS has location independent writes — data can be placed anywhere on disk

regardless of the location of other blocks in the same file or directory and even regardless of its

own previous location. This flexibility offers greater potential for high write performance than ear-

lier update-in-place systems because it is well suited to scale with trends in storage technology that

give preference to large data transfers. The log provides transactional semantics and rapid recov-

ery with the minimal number of writes during normal operation. Garbage collection costs can

often be completely hidden in idle time [Blackwell et al., 1995][Golding et al., 1995]. LFS is able

to provide high performance during bursts of high load by deferring until idle time work that many

file systems force into the critical path[Riedel and Gibson, 1996].

However, LFS had dramatically lower performance for some workloads. In particular, [Seltzer

et al., 1993] demonstrates that a random update workload, like the TPC-B transaction processing

benchmark, results in expensive garbage collection which renders the system virtually unusable.

Regardless of its many benefits, the dramatic worst case performance of LFS has led many to con-

clude that it was an unacceptable choice for real systems. In this chapter, I will show that with the

addition of some relatively simple adaptive methods the worst case performance of LFS can be

avoided while retaining its benefits in the common case by (i) choosing an LFS segment size to

balance transfer efficiency against cleaning efficiency, (ii) adapting the garbage collection mecha-

nism to changes in disk utilization and workload to avoid poor performance even for random

updates at high disk utilization, while preserving the benefits of the original LFS at lower disk uti-

lizations and for workloads with more locality and (iii) reducing cleaning costs by taking advan-

tage of cached data when cleaning. Together, these three optimizations reduce garbage collection

costs by up to a factor of six and improve overall write performance by up to a factor of four,

showing how adaptive methods can be used to provide consistently high write performance.

60

5.2. Methodology

To evaluate my adaptive methods, I used a combination of synthetic and measured workloads.

5.2.1. Traces

To explore both the extreme and more common workload characteristics, I use both measured

traces of real system behavior and synthetically generated traces to evaluate my modifications to

LFS. This is necessary in order to demonstrate that the proposed algorithms can indeed deliver

robust performance in extreme conditions and to verify that the algorithms are helping, or at least

not harming, average case performance. In this section, I describe the specific workloads I use and

discuss how these workloads affect some important experimental parameters.

5.2.1.1. Synthetic Random Update Workload

I use a synthetic random update workload with frequent data commit to examine the worst

case performance for LFS. To initialize the disk, I first write enough blocks sequentially to fill the

disk to the desired utilization. I then make ten times as many random updates as blocks initially

written. I make frequent requests for data commit with a sync call after every fourth write. All

writes issue from a single client. This workload approximates a TPC-C transaction processing

workload [TPC-C, 1990], but does not include index accesses.

This workload, with its random updates and frequent sync requests, represents an extreme

stress test for LFS. With random updates, each segment written produces holes which are scattered

throughout many previous segments. To recollect the free space, the cleaner must read many seg-

ments and rewrite their live blocks. For comparison, consider the opposite extreme, if the newly

written segment contains the same set of data blocks as the previous segment, then the previous

segment is emptied completely of its live data; the cleaner only needs to declare it clean in order to

generate space for a new log write.

61

The frequent sync requests also stress LFS write performance. The more often applications

request that data be committed to disk, the more difficult it is to accumulate enough data for an

entire segment. Partial segment writes reduce the system’s ability to amortize access latency over

large transfers.

Disk utilization also affects LFS write performance because it determines how long the system

can wait for segments to empty. The emptier segments are, the less live data the cleaner must

recopy to generate free space. Even for the random update workload, segments will eventually

empty on their own if there is sufficient free space on disk for the new segment writes to proceed.

In several experiments in this chapter, I examine the effect of variations in disk utilization on

LFS write performance. For synthetic workloads, disk utilization can be kept constant throughout

the trace. For example, in this random update workload, I initialize the disk with a sequential write

of all data that will exist during the trace. As I will discuss next in Section 5.2.1.2, controlling disk

utilization for measured traces can be less straight-forward.

5.2.1.2. Auspex Trace

I also examine one measured trace to represent more common levels of write locality and data

commit frequency. (Of course, this trace reflects only one common workload and not “the com-

mon case”.) I use the Berkeley Auspex Trace [Dahlin et al., 1994a]. This trace follows the NFS

activity of 236 clients serviced by an Auspex file server over the period of 1 week during late

1993. It was gathered by snooping Ethernet packets on four subnets. The clients are the desktop

workstations of the University of California at Berkeley Computer Science Division. There are

approximately 4 million reads and 1 million writes, each to 8 KB blocks, in the trace. In addition,

there are approximately 40,000 file deletes. Data is committed with a sync request every 30 sec-

62

onds. Because these traces are of NFS activity, the accesses that hit in the local cache are not

reflected in the traces. Accordingly, the size of the client caches is set to zero in the simulations.

Like most file system traces, the Auspex trace does not include a snapshot of the state of the

disk before the trace began (i.e. which files already existed, their size, their last modification time,

etc.). Therefore, many of the writes contained in the trace would have actually been overwrites to

data initially written before the trace began, rather than new writes as they appear to be. Despite

delete operations and frequent overwrites, the amount of live data climbs steadily throughout the

trace from an initially empty disk to a peak of 1.2 GB at the end of the trace. Over the lifetime of a

file system, disk utilization does naturally increase as more and more data is created. However, in

the real file system, this variation would have represented a much smaller percentage of the total

data stored.

To address this concern, I examine the trace and infer as much as I can about the data that

existed on disk before the trace began. If the trace contains the read or delete of a block that has not

yet been written, then I assume that it existed on disk before the trace began. In addition, if there is

any access to a block at offset x in a file, I assume that the entire file existed and was at least as

large as x. All files identified in this way are written sequentially to disk before the trace begins.

With initialization, the amount of live data increases from 2.66 GB before the trace begins to 3.15

GB at the end of the trace, an increase of 19%.

To vary the disk utilization, I choose the disk size such that when the amount of live data is at

its peak, the disk is filled to the desired disk utilization. This underestimates the disk utilization for

the majority of the trace, but avoids overflowing the disk when the data size reaches its peak.

63

5.2.2. Simulation Environment

To evaluate adaptive methods on a variety of workload patterns and technology trends, I used

a flexible simulation environment. In this section, I describe the simulator I used. I also discuss the

ways in which it is a simplification of the real world and the impact of these simplifying assump-

tions.

The bulk of the simulation infrastructure is an LFS simulator which is approximately 15,000

lines of C++ code. It interprets trace records that request a variety of operations including read,

write, delete, truncate and sync. Records specify a unique file identifier and block offset for refer-

enced blocks. If the trace contains traffic from more than one client, a unique client identifier indi-

cates the origin of the request.

For the Auspex trace, I simulate both client and server caches.1 When a block is read, the sim-

ulator checks the caches— first the client cache and then the server cache. If the data was found in

the server cache, it is added to the client cache possibly replacing the least-recently used cache

entry. If the data was not found in memory, the system determines the block’s disk location and

issues a disk read. In this case, a copy of the block is placed in both the server and the client cache.

Unless specified, the client caches are 16 MB and the server cache is 128 MB. For the random

update workload, I simulate a single machine; in this case, the client caches are eliminated.

Blocks written are placed first into a write buffer. Each write buffer contains as many blocks

as a single segment. Writes to data already in the write buffer overwrite the existing contents, thus

reducing disk traffic. When a write buffer is either full or receives a sync request, the data is writ-

ten into an empty segment on disk. The write buffer is flushed every 30 seconds in addition to any

sync requests. In a client-server simulation, more than one write buffer can be used in order to sep-

1. When simulating a client-server environment, it is the server’s file system being simulated.

64

arate the traffic by originating client. This models the case in which the client buffers writes for up

to 30 seconds before sending them to the server to be committed to disk.

The disk model computes the latency of each request as the sum of average seek time, average

rotational latency and data transfer time. This does not capture the complexity of modern disks.

Average access latency will be an overestimate for many disk requests because seek latency varies

with seek distance and rotational latency varies with the position of the disk head in relationship to

the requested data. This model also uses a single bandwidth for the whole disk, while modern

disks have multiple zones with different bandwidths. The file system could deal with this added

complexity by treating each zone (or group of zones with similar bandwidths) differently.

The cleaner runs when there are no more empty segments available for new data. The cleaner

can choose several different garbage collection methods, including traditional LFS cleaning, hole-

plugging [Wilkes et al., 1995] and an adaptive combination of cleaning and hole-plugging. (Each

of these methods will be discussed in more detail in Section 5.4.) The cleaner can also chose from

among a variety of policies for choosing segments to garbage collect, including greedy, which

simply chooses the least utilized segment at each opportunity, and cost-benefit [Rosenblum and

Ousterhout, 1992]. The cost-benefit policy chooses the segment that minimizes the formula

, where u is the utilization of the segment and a is the age of the segment. For the rest of

this chapter, I will refer to this policy as cost-age in order to avoid confusion with the other cost-

benefit formulas presented in Section 5.4.2. The maximum amount of data that the cleaner may

process at one time may be varied.

System meta-data, like segment utilization information and file meta-data, is maintained in the

simulator, but is not reflected in the disk traffic. In terms of write performance, the main effect of

this simplification is to reduce the overall traffic to disk. In terms of read performance, it will not

1 u+
a 1 u–()×

65

capture the degree to which data is located near its related meta-data on disk. Original LFS keeps

the updated meta-data together with the updated data because they are written at the same time.

Some of the techniques I discuss in this chapter improve write performance, but disturb the tempo-

ral locality of the write log. This could degrade read performance by separating data from its meta-

data. In Chapter 6, I present a method for identifying and regrouping related data that becomes

separated. This algorithm could also be used to regroup data and related meta-data.

Write performance is also sensitive to the data rate or the amount of idle time present in the

workload because garbage collection costs can be completely hidden if sufficient idle time exists

to perform garbage collection in the background. In this study, I always perform garbage collec-

tion in the foreground so that no garbage collection costs are hidden. Any idle time present in a

real workload would only improve performance.

5.2.3. Performance Model

As a starting point, I use the write cost metric originally used in evaluating LFS write perfor-

mance [Rosenblum and Ousterhout, 1992]. This original write cost model can be expressed with

the formula found in Equation 1.

 (EQ 1)

SegsWrittenNewData SegsReadClean SegsWrittenClean+ +
SegsWrittenNewData

---=

SegmentsTransferredTotal
SegmentsTransferredNewData
---=

WriteCost

66

Write cost is an reflection of the cleaner overhead. It is the ratio of total work to the work nec-

essary to initially write the new data to disk. The total number of segments transferred includes

both the initial writes of new data (SegsWrittenNewData) and cleaner reads and writes (SegsRead-

Clean + SegsWrittenClean). Ideally, the data would be written once and never moved by the cleaner;

this happens if all data in the segment is overwritten before the segment is reclaimed. In the best

case, then, SegsReadClean + SegsWrittenClean is 0 and the write cost is 1.

Similarly, we can isolate simply the cleaner overhead as:

In LFS, all writes, both the initial writes of new data and writes of old live data being coa-

lesced by the cleaner, are performed in segment-sized batches. The cleaner also reads partially live

segments in their entirety in order to clean them, before writing the live data back out as part of a

new coalesced segment.

In the next section, I discuss how to modify these metrics to account for the impact of disk per-

formance characteristics.

 (EQ 2)

SegsReadClean SegsWrittenClean+
SegsWrittenNewData

--=

CleanerOverhead

67

5.3. Understanding Write Cost: The Effect of
Segment Size

In this section, I discuss why segment size plays a larger role in the write performance of LFS

than has been previously suggested. In [Rosenblum and Ousterhout, 1992], segment size is chosen

to be large enough that the access time becomes insignificant when amortized over the segment

transfer. In Sprite LFS, a relatively large 1 MB segment is used.

On the other hand, there is a countervailing benefit to choosing a smaller segment size.

[Rosenblum, 1992] observes that at smaller segment sizes the variance in segment utilizations is

larger; allowing the cleaner to choose less utilized segments. In particular, smaller segments are

more likely to empty completely before cleaning. Empty segments can simply be declared clean

without requiring any disk transfers by the cleaner. In the limit, with one-block segments, cleaning

costs would always be zero because all segments would be either full or empty and no data would

need to be compacted. Of course, single block segments would eliminate any advantage from

batched transfers.

In this section, I describe a way to quantify this trade-off between amortizing disk access times

across larger transfer units and reducing cleaner overhead.

Figure 5-1 shows the results of varying the segment size for the Berkeley Auspex trace.

According to the original definition of write cost in Equation 1, write cost is minimized at small

segments because smaller segments reduce cleaner overhead. However, this does not reflect the

inefficiency introduced by transferring smaller segments.

68

In Equation 3, I introduce a quantity to reflect this inefficiency. I define transfer inefficiency to

be the ratio between the actual segment transfer time and the time it would have taken to transfer

the segment at full disk bandwidth. Figure 5-1 plots this computed value across a range of segment

sizes for a typical disk with a 15 ms access time and 5 MB/s bandwidth. As segments become

large, the access time becomes insignificant relative to the time for transferring the segment, and

therefore the transfer inefficiency approaches one.

FIGURE 5-1. Varying segment size for the Auspex workload. Disk utilization is 85%; access
time is 15 ms and bandwidth is 5 MB/s. Small segments are inefficient due to seek and
rotational delay; large segments are inefficient due to fewer opportunities to find nearly empty
segments. Overall write cost includes the impact of partial segments; write cost times TI does
not. Write cost and overall write cost are simulated quantities. Transfer inefficiency is
computed.

69

In Figure 5-1, we see that the write cost approaches 1 as the segment size decreases and the

cleaner overhead drops to 0. Also, the transfer inefficiency approaches 1 as the segments become

larger and we use the disk more efficiently.

The write cost in Equation 1 measures the overhead of cleaning. The transfer inefficiency in

Equation 3 measures the bandwidth degradation caused by seek and rotational delay. In

Equation 4, I introduce a new quantity, overall write cost, that captures both of these effects. The

overall write cost is the total time required to write new data and clean segments, divided by the

time to write just the new data at full disk bandwidth. If all disk transfers are in units of full seg-

ments, then this is simply the product of the original write cost in Equation 1 times the transfer

inefficiency in Equation 3.

 (EQ 3)

SegTransferTimeActual
SegTransferTime Ideal
--=

AccessTime DiskBandwidth
SegmentSize

---× 1+=

TransferInefficiencySegs

AccessTime SegmentSize
DiskBandwidth
---+

SegmentSize
DiskBandwith

---=

70

.

Figure 5-1 shows that this quantity does allow us to see the impact of the competing effects I

have discussed. It is minimized at an intermediate segment size. Note that when the transfer ineffi-

ciency is 1, the overall write cost is equal to the original write cost. This is consistent with the

assumption made in [Rosenblum, 1992] that the segment size is large enough that access time

becomes insignificant. In Figure 5-1, the difference between Equation 4 and Equation 5 is due to

the impact of partial segments.

Changes in disk characteristics affect the trade-off between cleaner overhead and transfer inef-

ficiency. Figure 5-2 shows that the optimal segment size for the Auspex workload is approxi-

mately four times the product of disk access time and bandwidth (i.e., four times the amount of

data that could be transferred during the time necessary to position the disk head). Figure 5-2

shows the overall write cost curves for the disks used in Sprite LFS (17.5 ms access time and 1.3

MB/s bandwidth) and for more modern disks (15 ms, 5 MB/s and 10 ms, 15 MB/s). This graph

shows that for the Auspex workload a segment size of 64–128 kB would have been better than the

1 MB segments used in Sprite LFS. The optimal segment size has been increasing since then. This

OverallWriteCost

 (EQ 4)

when all transfers are done in units of segments

 (EQ 5)

TransferTimeTotal
TransferTime Ideal
--=

SegmentsTransferredTotal SegTransferTimeActual×
SegmentsWrittenNewData SegTransferTime Ideal×

--=

WriteCost TransferInefficiencySegs×=

71

suggests that to be able to scale with disk technology improvements, an LFS file system should

measure and adapt to its underlying disk performance.

Figure 5-3 shows overall write cost for the random update workload. Despite the inefficiency

of single-block transfers, overall write cost is still lowest for single block segments (8 kB) because

all cleaning overhead is avoided. (Note, however, segment header overhead is not included in the

estimate of overall write cost.) With more than one block, there is little benefit to smaller seg-

ments. Because blocks are not overwritten in groups, segments empty slowly; even small seg-

ments stay nearly as full as the disk.

FIGURE 5-2. Effect of disk characteristics on overall write cost for the Auspex workload.
Disk utilization is 85%. The bottom curve with access time of 17.5 ms and bandwidth of 1.3
MB/s represents the disks measured in Sprite LFS; note that Sprite chose a segment size of 1
MB. The middle curve represents the baseline disk simulated and the top curve represents a
higher performance disk. Note that the curve is the same for different disks with the same access
time bandwidth product. For all curves, overall write cost is minimized for a segment size of
roughly four times bandwidth times access time. Overall write cost increases for faster disks
because it is harder to match the peak disk performance.

72

It may even be possible to vary the segment size dynamically by enabling the cleaner to

observe the average length of the runs of holes in the segments it cleans; a workload with short

runs might benefit from a smaller segment size. Another possibility would be to format the disk

with several fixed segment sizes. One use would be to exploit the fact that different zones of the

disk have different performance characteristics; the bandwidth between inner and outer tracks can

vary by as much as 50%. Another use would be to allow data to be written into the smaller seg-

ments initially and then cleaned into the larger ones. For workloads with locality, recently written

data is more likely to be overwritten; this would suggest using smaller segments to maximize the

likelihood of emptying segments as all of their data is overwritten. By contrast, cleaned data tends

to be older and less likely to be overwritten; this suggests using larger segments to better amortize

disk access times. For the random update workload, newly written segments are not any more

likely to empty and so would not benefit from the smaller segments, but at least the cleaned seg-

ments could benefit from the larger ones.

FIGURE 5-3. Varying segment size for the random update workload. Disk utilization is
85%; access time is 15 ms and bandwidth is 5 MB/s. One-block segments avoid all cleaning
costs. Large segments benefit from larger transfers even though it is difficult to find low
utilization segments to clean. Overall write cost includes the impact of partial segments; write
cost times TI does not. Write cost and overall write cost are simulated quantities. Transfer
inefficiency is computed. Note that the scale of the y-axis for the random workload graphs in
this chapter differ from that for the Auspex graphs, for example in Figure 5-1 and Figure 5-2.

73

5.4. Adaptive Cleaning: Choosing the Best Garbage
Collection Mechanism Based on Usage Patterns

In this section, I present an LFS cleaning algorithm that avoids the dramatic performance deg-

radation seen at high disk utilization while retaining the good performance of traditional LFS

cleaning at lower utilizations. It does this by dynamically choosing between two mechanisms: tra-

ditional LFS cleaning and hole-plugging [Wilkes et al., 1995]. The adaptive method successfully

chooses the lowest cost mechanism based on the observed usage patterns.

5.4.1. Comparing Traditional Cleaning With Hole-plugging

In traditional cleaning, the live blocks in several partially empty segments are combined to

produce a new full segment, freeing the old partially empty segments for reuse. In many environ-

ments, traditional cleaning performs very well. Idle time can often be exploited to hide cleaning

costs from users; for the workloads examined in [Blackwell et al., 1995], 97% of cleaning could be

done in the background. [McNutt, 1994] shows that cleaning costs are relatively low at disk utili-

zations below 80%. If segment updates show a high degree of locality, then some segments will be

emptier than others and will yield more free space when cleaned. In addition, traditional cleaning

preserves the temporal locality of the log because it keeps the live data gathered from segments

together.

The problem with cleaning appears at high disk utilizations, especially for workloads with

many random updates and insufficient idle time [Seltzer et al., 1993][Seltzer et al., 1995]. Because

segments do not have a chance to empty before they must be cleaned, the cost of cleaning can sky-

rocket. In order to coalesce one free segment’s worth of space, the cleaner must process many

nearly full segments. Each segment must be read, and all but the few holes rewritten into a new

segment. Recalling Equation 1, this translates into high SegsReadClean and SegsWrittenClean and

74

therefore high write cost. In an extreme case, the entire disk might need to be cleaned in order to

coalesce a single contiguous segment.

In hole-plugging, partially empty segments are freed by writing their live blocks into the holes

found in other segments. In order to produce one free segment’s worth of space, it is only neces-

sary to read one segment and rewrite each of its live blocks. These writes are more expensive per

block than writing complete segments because each block write requires additional seek and rota-

tional delay. However, despite the higher per-block cost, at high disk utilizations, hole-plugging is

still better than cleaning because we avoid processing so many segments. At lower disk utiliza-

tions, the larger cost of writing individual blocks makes hole-plugging more expensive than tradi-

tional LFS cleaning.

In order to compare traditional cleaning with hole-plugging, I introduce a write cost formula

for hole-plugging in Equation 6. In the traditional LFS cleaning mechanism, all transfers are done

in units of whole segments. However, with hole-plugging, some transfers are done in units of

whole segments (the initial writes of new data, SegsWrittenData, and segments read to be broken

up into patches for holes, SegsReadClean), while other transfers are in units of individual blocks

(the patches, BlocksWrittenHole-plugging). In practice, the TransferTimeBlock varies based on the

locality of blocks written. Seek latency is only incurred for the first block written to the segment,

but each block does incur a full half rotation. It would make sense to minimize rotational delay by

ordering the block writes when possible. The file system might have difficulty estimating the disk

head position as it is constantly changing. However, some disk drives perform such reordering

themselves. It should be possible by sending multiple discontiguous requests to the same segment

to determine experimentally how well a disk drive is able to reorder multiple block writes to the

same segment. There are, however, other per transfer overheads (e.g. controller overhead) that will

75

contribute to the experimentally determined per block overhead, but which cannot be removed by

request reordering.

There are several ways that hole-plugging could be integrated into an LFS. In existing LFS

implementations, each segment has a segment header that contains information about its constitu-

ent blocks. In order to maintain this structure, the header would need to be read and updated for

each segment patched. Two headers per segment would be required to prevent corruption. Alterna-

tively, the per-block information in the segment header could be distributed into individual block

headers. A 512-byte block header for each 8 kB block would be an overhead of 6.25%. Inter-

spersed block headers would also reduce read bandwidth by the same amount. In Figure 5-4, I

evaluate the space-time trade-off between these two strategies for the random update workload.

The block header approach performs better at 99% utilization than the segment header approach

does at 85% utilization— more than allowing for the 6.25% space overhead. Therefore, I use the

block header approach for the rest of the experiments in this chapter.

 (EQ 6)

OverallWriteCostHole-plugging

TransferTime Total
TransferTime Ideal
--=

TransferTime Total
SegmentsWritten NewData SegTransferTime Ideal×
---=

where TransferTimeTotal

TransferTimeSeg SegsWrittenData SegsReadClean+〈 〉×
TransferTime Block BlocksWrittenHole plugging–×

+=

76

I am careful to preserve the atomicity properties of the log when using the hole-plugging

mechanism. Only after a hole is plugged do I update the log to point to the new locations. If the

system crashes while overwriting the hole, there is no harm because, upon recovery, the system

will continue to treat any partially overwritten hole as dead space. Also, the segments freed by

hole-plugging should not be reused until the log has been updated to point to the new locations. If

the system crashes before the updated meta-data is written, the old meta-data still points to the

original segments which are intact. Therefore the following order should maintain the atomicity

properties of the log: 1) plug holes in segments 2) update the log to point to the new locations 3)

reuse the segments that were freed by hole-plugging.

Hole-plugging also requires a means to quickly identify which of a segment’s blocks are really

holes. To facilitate cleaning, a segment usage file is already maintained which lists the current uti-

lization of each segment. The values in this file are update as newly written data occupies free seg-

ments and creates holes in previously written segments. It would be a minor change to replace the

FIGURE 5-4. Cleaning and hole-plugging for the random update workload. Segment size is
256 KB; access time is 15 ms; bandwidth is 5 MB/s. Hole-plugging with block headers requires
updating the block and its contiguously allocated header; otherwise the segment header must be
read and written as well. Greedy cleaning is used because it is optimal for this workload; see
Figure 5-6 for a comparison with cost-age. Although this point is not shown, at 99% utilization,
the overall write cost for cleaning soars to 64.5.

77

segment utilization value with a bit vector indicating which blocks are alive. It would be updated

in the same manner.

Figure 5-4 compares the write cost of cleaning with hole-plugging. Even for this worst-case

workload, cleaning performs better than hole-plugging up through 85% disk utilization. However,

above 85%, the overall write cost of cleaning shoots from below 10 to above 64. Hole-plugging

degrades much more gracefully, staying below 15 for the block header approach.

Figure 5-5 shows the behavior of both cleaning and hole-plugging for the Berkeley Auspex

workload. Cleaning performs as well or better than hole-plugging up to 99% utilization for this

workload.

Hole-plugging can be viewed as bringing some benefits of write-ahead logging to LFS. Write-

ahead logging writes the new updates to the log and then later writes them on top of the “holes”

that those updates created. Write-ahead logging offers consistent performance by paying the con-

FIGURE 5-5. Cleaning and hole-plugging for the Berkeley Auspex workload. Segment size
is 256 KB; access time is 15 ms; bandwidth is 5 MB/s. Cost-age cleaning is used. Cleaning
performs as well or better than hole-plugging except above 99% disk utilization. Note the
change in the scale of the y-axis relative to Figure 5-4.

78

stant cost of one batched write plus one in-place block write per block written. Similarly, one

might expect hole-plugging costs to remain fairly constant. However, in Figure 5-4 and Figure 5-

5, the cost of hole-plugging decreases with lower disk utilization. This is because at low disk utili-

zation many segments empty completely before they must be processed and hole-plugging, unlike

write-ahead logging, can benefit from this effect.

5.4.2. Adaptive Cleaning Policy

In order to retain the advantages of traditional cleaning while avoiding its dramatic perfor-

mance degradation at high disk utilizations, I introduce a policy that chooses adaptively between

cleaning and hole-plugging at each garbage collection opportunity. (Note: This is orthogonal to the

policy used to choose which segments to clean.)

When garbage collection is needed, candidate segments are chosen for both traditional clean-

ing and hole-plugging. For cleaning, the candidates are those segments that will be compacted to

form new segments. I simulated both greedy and cost-age cleaning policies. For hole-plugging, the

candidates are those segments whose live blocks will be used to fill in the holes found elsewhere.

As in AutoRAID, I use blocks from the least utilized segments to plug the holes in the most uti-

lized segments.

Once the candidates have been identified, a cost-benefit estimate is calculated for each

approach using the formulas found in Equation 7 and Equation 8.

In these equations, cost is expressed in terms of the total time to perform the garbage collec-

tion and benefit is expressed in terms of free space reclaimed. For hole-plugging, the cost is the

time to read the candidate segments and write their live blocks into holes found in other partially

empty segments; the space freed is the size of all the candidate segments read. For cleaning, the

cost is the time to read the candidate segments and rewrite their live blocks as whole segments to

79

the end of the log; the space freed is the size of all the empty blocks found in the candidate seg-

ments.

Once these cost-benefit estimates have been calculated, we simply choose the mechanism with

the lower estimate. Note that this decision applies only to the current garbage collection opportu-

nity. At the next opportunity, the other approach may be chosen.

In Figure 5-6, I show cleaning, hole-plugging and the adaptive policy for the random update

workload. I include greedy cleaning as well as cost-age since greedy has been shown to have

slightly better performance than cost-age on a random workload [Rosenblum and Ousterhout,

1992][Seltzer and Smith, 1995]. The adaptive policy correctly shifts from cleaning to hole-plug-

ging at the appropriate point. I show that we are indeed able to retain the good common case per-

 (EQ 7)

CostBenefitCleaning

CandidatesRead LiveBlocks BlocksPerSeg⁄+()
TransferTimeSeg

×=

TransferTimeCleaning
SpaceFreedCleaning

--=

where TransferTimeCleaning

and SpaceFreedCleaning

E= mptyBlocks BlockSize×

 (EQ 8)

CostBenefitHole-plugging

CandidatesRead TransferTimeSeg×
LiveBlocks TransferTimeBlock×

+=

TransferTimeHole plugging–
SpaceFreedHole plugging–

--=

where TransferTimeHole-plugging

and SpaceFreedHole-plugging
C= andidatesRead SegmentSize×

80

formance of traditional cleaning while avoiding its dramatic performance degradation at high disk

utilizations.

In Figure 5-7, I show cleaning, hole-plugging, and the adaptive policy for the Berkeley Aus-

pex workload. Notice that at some points the adaptive policy performs better than the minimum of

cleaning and hole-plugging by doing each when appropriate. Also note that below 60% disk utili-

zation, the overall write cost is constant. In this region, no garbage collection is required because

there is enough free space that segments have time to empty on their own before the system runs

out of clean segments for new log writes.

FIGURE 5-6. Adaptive cleaning for the random update workload. Note that the hole-
plugging and greedy cleaning curves are the same as in Figure 5-4. The adaptive algorithm
chooses between hole-plugging and greedy cleaning; it correctly follows the lower cost
mechanism at each point.

81

This adaptive method could also be used to adapt between any additional garbage collection

mechanisms given a correct cost-benefit model of their behavior.

Changes in disk characteristics also have an impact on the trade-off between cleaning and

hole-plugging, making the need for adaptive cleaning even more acute. Disk bandwidth has been

improving faster than disk access times, resulting in higher relative block transfer costs. Figure 5-

8 shows that on a faster disk the gap between hole-plugging and cleaning is larger at lower disk

utilizations and that the crossover point is later. Similarly, on RAID systems, hole-plugging would

be penalized relative to cleaning because of the need to read the old data in blocks being plugged

in order to update parity.

FIGURE 5-7. Adaptive cleaning for the Berkeley Auspex workload. Note that the hole-
plugging and cost-age cleaning curves are the same as in Figure 5-5. The x-axis is on a reverse
log scale in order to show clearly the region above 90%. Adaptive outperforms both hole-
plugging and cleaning because it can choose the appropriate method at each garbage collection
opportunity.

82

5.5. Using Cached Data To Reduce Write Cost

In this section, I describe how to further reduce cleaning costs by taking advantage of data that

is already cached. When a segment is completely cached, it can be cleaned by writing its live

blocks— there is no need to do a disk read. This lowers the SegmentsReadClean component of write

cost in Equation 1. As far as I know, no LFS implementation performs this optimization.

In exploring this possibility, I consider two different cleaning policies: normal cost-age in

which cached data is not used, and a modified cost-age (cost-age-cache) in which fully cached

segments are preferentially chosen by taking into account that a segment is cached in the cost-age

formula — in effect, adapting to the contents of the cache. For this modified policy, when a seg-

ment is cached, the cost portion of the cost-age function includes only the cost to write out the live

blocks and not the cost to read the complete segment.

FIGURE 5-8. Effect of disk characteristics on the trade-off between cleaning and hole-
plugging, for the random update workload. Note that the slow curves are the same as in
Figure 5-6, using a disk with 15 ms access time and 5 MB/s bandwidth. The fast curves use a
disk with 10 ms access time and 15 MB/s bandwidth. Cleaning performs relatively better than
hole-plugging on the fast disk because of the larger gap between block transfer efficiency and
segment transfer efficiency. Overall write cost increases for the fast disk because it is harder to
match the peak disk performance.

83

I implemented the modified cleaning policy in the LFS simulator by keeping an in-memory set

of cached segments; its size is limited to the number of complete segments that fit in memory. As

a block leaves the cache, I check this set and remove its segment if necessary. I track only seg-

ments that remain completely cached after being written; detecting when full segments re-enter the

cache would complicate the implementation for only marginal benefit. I show significant improve-

ment even though I do not take advantage of segments that are re-cached.

In Figure 5-9, I show the impact of increasing server cache size on overall write cost for the

Berkeley Auspex workload at various disk utilizations. The top group of lines illustrates the

behavior when the disk is 95% utilized. The next two groups of lines are with the disk at 85% and

60% utilization, respectively.

As expected, the performance of the cost-age policy is insensitive to cache size. Indeed, all of

the cost-age lines are flat. For the cost-age-cache policy, there is more benefit with larger caches as

one would expect.

FIGURE 5-9. Varying server cache size for the Auspex workload. Segment size is 256 KB;
access time is 15 ms; bandwidth is 5 MB/s. Three different disk utilizations are shown for both
normal cost-age and cost-age that uses cached data. The client cache size is set to zero as
described in Figure 5.2.2. This graph shows the reduction in overall write cost obtained by
exploiting cached data during cleaning. The benefit is greater at higher disk utilizations.

84

There is incremental benefit even up through 1 GB, indicating that the working set of the Aus-

pex trace is larger than 1 GB. This is unsurprising considering that the total data held on the server

was approximately 100 GB of binaries and home directories. At a cache size of 256 MB and disk

utilization of 95%, there is an 11% reduction in overall write cost corresponding to a 30% reduc-

tion in cleaning overhead.

In addition, the benefit of cleaning from cache increases as the utilization of the disk increases.

To illustrate why, consider the effect on the cost-age formula for cleaning a single segment as the

utilization of that segment increases. For a highly utilized segment, less space is reclaimed and

therefore the read that we avoid has higher cost relative to the amount of space reclaimed. To see

this quantitatively, consider the cost-age formulas. Recall from Section 5.2.2 that when we are

unable to use cached data to avoid reading the segment, the cost-age of the segment is ,

where u is the percentage of live blocks in the segment and a is the age of the segment. When we

are able to use cached data to avoid the read, the cost-age drops to . Their difference,

, is larger for segments with greater utilization.

As overall disk utilization increases, LFS will have to clean segments with higher utilization.

As a result, the increased benefit for fuller segments translates directly into increased benefit for

fuller disks. Interestingly, this means that using cached data is especially helpful in addressing the

worst-case performance of LFS at high disk utilizations.

Also, notice that we begin to see benefit at smaller cache sizes as the utilization increases. At

lower utilizations, we can wait longer to clean; in that time, more of the segments we are interested

in cleaning have been evicted from the cache.

1 u+
a 1 u–()×

u
a 1 u–()×

1
a 1 u–()×

85

5.6. Putting It All Together

Figure 5-10 shows the combined impact of the optimizations I have discussed in this chapter

relative to original LFS. There is up to a 20% reduction in overall write cost for the Berkeley Aus-

pex trace and an up to four-fold reduction for the random workload. That corresponds to a 42%

and almost six-fold reduction in cleaner overhead, respectively. Log scale is used to clearly dis-

play both workloads.

5.7. Related Work

In AutoRAID, hole-plugging is used rather than traditional LFS cleaning or an adaptive com-

bination of the two, because AutoRAID is structured such that hole-plugging always performs bet-

ter. The AutoRAID consists of two areas: the mirrored or RAID-1 area, which houses recently

updated data, and the RAID-5 area, which houses older data. The RAID-5 area is the part of Auto-

RAID that is log-structured. It is always at high utilization because it is constantly cleaned in order

to return PEGs (segments) to the free pool where they can be used for mirrored writes or fresh

demotions into the RAID-5 log. In addition, the updates to the RAID-5 area are fairly random

FIGURE 5-10. Overall write cost of original LFS versus modified LFS. Segment size is 256
KB; server cache size is 128 MB; access time is 15 ms; bandwidth is 5 MB/s; client cache size is
16 MB. Note the log scale on both axes. This graph shows the aggregate effect on overall write
cost of using both adaptive cleaning and cached data. The segment size is the same for all
curves. However, an additional benefit would be obtained for the Auspex trace if the Sprite LFS
segment size of 1 MB was used for the original LFS curves (see Figure 5-1–Figure 5-2).

86

because the mirrored storage area absorbs the updates to the hot data. The remaining update stream

reaching the RAID-5 applies to cold data and shows very little locality in practice. Thus, the Auto-

RAID environment is the worst possible case for traditional cleaning (high utilized segments that

are updated randomly). AutoRAID does PEG-cleaning only in the special case that there are no

holes to be plugged; that is when all PEGs but one are full or empty. In this case, the live blocks

from that single PEG are appended to the end of the RAID-5 write log [Wilkes et al., 1995].

Golding et al. explored useful optimization tasks that could be performed in idle time [Golding

et al., 1995]. They discuss adapting the amount of idle processing attempted based on a prediction

of how long the current idle period will last.

In many ways, this work had its roots in Margo Seltzer’s analysis of the performance problems

in LFS, especially for the TPC-B transaction processing benchmark and in the discussion of the

relative merits of LFS and FFS which arose from that analysis [Seltzer et al., 1993] [Ousterhout,

1995a] [Seltzer et al., 1995] [Ousterhout, 1995b][Seltzer and Smith, 1995] [Ousterhout,1995c].

5.8. Conclusions

In this chapter, I have presented adaptive methods that have targeted LFS write performance.

They enable LFS to avoid its dramatic worst case performance for random updates at high disk uti-

lization. In addition, they improve common case performance by allowing write performance to

scale with improvements in disk performance. In the next chapter, I will focus on improving read

performance.

87

6 Providing Efficient File System
Read Access

In Chapter 5, I focused on LFS write performance. In this chapter, I consider how to improve

file system read performance and how to balance read performance with write performance.

6.1. Motivation

In Chapter 3, I discussed how existing systems are either read-optimized or write-optimized.

LFS and write-anywhere systems are write-optimized because their data layout policies focus on

minimizing seek and rotational delay for writes — LFS by batching writes and write-anywhere

systems by writing to free space close to the current disk head location. On the other hand, update-

in-place and write-ahead logging systems invest in additional seek and rotational delay in order to

group data based on its position in the directory hierarchy (i.e. blocks in the same file together and

files in the same directory together).

In Chapter 4, I discussed how workloads can vary along many dimensions including the ratio

of read to write traffic and the pattern of read and write accesses. Certainly, the relative effective-

ness of read and write optimized systems will be affected by these variations in workload. Both

read and write optimized systems have “blind spots”. Read-optimized systems invest in careful

placement for all data— even data that is quickly deleted or overwritten, data that is not read in any

predictable way and data that is read predictably but not with other data located nearby in the

directory hierarchy. Write-optimized systems do not invest in careful placement for any data—

88

even when data that is routinely read together is scattered across the disk by the default write poli-

cies.

To address these problems, I present an adaptive reorganization algorithm that monitors actual

access patterns and invests in careful data placement only where past access patterns suggest a

benefit. I show how to integrate this algorithm into a write-optimized file system to balance read

and write performance. I examine the performance under a variety of access patterns, disk utiliza-

tions and disk performance characteristics.

6.2. Methodology

6.2.1. Workloads

As in Chapter 5, I use both measured and synthetically generated traces. I use synthetically

generated traces to examine how the read performance of existing file systems and my dynamic

reorganization algorithm vary with factors such as read and write patterns, disk utilization and disk

performance.

I use three simple microbenchmarks. The first is a sequential write of a large file followed by

sequential read of the same file. The second is random write of a large file followed by sequential

read. The third writes the file in a non-sequential pattern and then reads it in the same non-sequen-

tial pattern.

I also use a portion of a long term trace in an academic environment to evaluate the impact of

dynamic reorganization on a real workload [Roselli, 1998]. Roselli monitored fourteen desktop

machines belonging to the graduate students, staff and faculty of a computer science research

group for over one year [Roselli, 1998]. She records user level file system activity by capturing all

system calls made to the file system.

89

In addition, I use a trace of the TPC-D decision support benchmark running on a qualification

scale database in Microsoft SQLServer [Matthews, 1999]. TPC-D consist of 17 complex business

oriented queries [TPC-D, 1995]. The database uses 22 separate files: 8 files containing the TPC-D

tables, 8 files containing non-clustered indices on those tables, 5 containing database meta-data

including the recovery log and 1 containing a temporary working space for intermediate results.

Each file represents a fixed size portion of space reserved within SQLServer for the specified pur-

pose. The data is accessed through the file system and I collected this trace using Filemon, a file

system tracing tool implemented as a filter driver interposed above the NTFS drivers [Russinovich

and Cogswell, 1997].

6.2.2. Simulation Environment

To evaluate various workloads on various file system architectures, I use a series of file sys-

tem simulators. For LFS, I use the LFS simulator described in Chapter 5. The adaptive write opti-

mizations discussed there are used throughout this chapter. I also add a dynamic reorganization

algorithm which I describe in Section 6.4.

In addition, I developed simple simulation models of FFS and write-anywhere systems. More

sophisticated simulators would be required to evaluate their performance on more general work-

loads, but for the three microbenchmarks, these simple simulators are sufficient. The FFS simula-

tor simply places the single large data file accessed by each microbenchmark sequentially on disk.

(Note that write-ahead logging systems produce the same semantic layout as FFS does so there is

no need to consider the layout of such systems separately.) The write-anywhere simulator allocates

each new block to the free location closest to the disk head. It continues searching for free loca-

tions in one direction until it has reached the edge of the disk at which point it turns and searches

for free locations in the opposite direction [Wang et al., 1999]. Like the LFS simulator, neither the

FFS or write-ahead simulators model accessing system meta-data on disk.

90

For all three simulators, I record the sequence of disk accesses they produce and feed them

into several low level disk simulators. I use the Dartmouth disk simulator [Kotz et al., 1994] which

simulates a 1.2 GB HP97560 disk. For this disk, the bandwidth is 2.10 MB/sec and the average

access time (i.e. time for a random seek and one-half rotation) is approximately 19 msec. For com-

parison, I also use the DiskSim disk simulator [Ganger et al., 1998] to simulate a 1.05 GB

HPC3323A. For this disk, the average bandwidth is 4.0 MB/sec and the average access time is

approximately 14 msec. I allow the disks to prefetch up to 128 KB of adjacent data with each read

request. These disks are both significantly slower than modern disks. However, as detailed models

of two generations of disk drives, they allow me to explore the impact of improvements in disk

drive technology (Section 2.2 on page 14).

I quantify the effect of the fragmentation and disk utilization on both existing file system lay-

out policies and on dynamic reorganization. To control disk utilization, for the synthetic traces I

simply adjust the total amount of data written to fill the disk to the desired degree. For the mea-

sured traces, I adjust the amount of disk space using portions of a single disk or multiple disks if

necessary.

6.3. Microbenchmark Read Performance of Existing
File Systems

In this section, I illustrate the read performance characteristics of LFS, FFS and write-any-

where systems using several microbenchmarks. LFS and write-anywhere systems are considered

write-optimized because their layout policies are based on making write accesses more efficient.

FFS is considered read-optimized because it pays a higher write cost to place data in a specific

organization designed to improve read performance.

91

To evaluate the layout policies of these systems, I use three simple microbenchmarks, each

involving a single 625 MB file. All benchmarks begin by writing the entire file sequentially. The

first benchmark follows this with a sequential write of the file and a single sequential uncached

read of the same file. The second follows with a random write and a sequential read. The third

writes the file in a non-sequential pattern and then reads it in the same non-sequential pattern.

These microbenchmarks are intended not to show real-life performance, but rather to illustrate

the differences between existing systems. They will show that no single system performs well

across the board, even for these simple access patterns. Intuitively, we expect LFS and write-any-

where systems to perform well for read patterns that match the write pattern and FFS to perform

well for sequential read patterns.

To include the effects of fragmentation and garbage collection, I examine the performance of

these benchmarks at two different disk utilizations. In the first case, the file is written to an empty

disk; the file is 50% of the total disk space. In the second case, I first fragment the free space on the

disk by allocating 40% of the disk blocks to data that is not referenced again during the bench-

mark. This preallocated data is placed evenly throughout the disk in chunks of 8 blocks at a time.

The benchmark file is again 50% of the total disk space, yielding 90% utilization.

In Figures 6-1 through 6-6, I report the cumulative disk access times as reported by the Dart-

mouth disk simulator on the x-axis. The y-axis reflects the logical phases of the benchmark. In

each graph, the region from 0 to 625 MB is the initial sequential write of all the benchmark data.

The region from 625 to 1250 MB is the write pattern specified by the benchmark and the region

from 1250 to 1875 MB is the read pattern specified.

The cumulative time on the x-axis reflects all data transferred to disk including data trans-

ferred by LFS during garbage collection; the y-axis reflects only user data transferred. This allows

92

the progress of each system on the benchmark to be directly compared. Steeper slopes indicate

higher performance as more user data is transferred in less time.

6.3.1. Sequential Write Followed By Sequential Read

Figures 6-1 and 6-2 show the results for sequential write followed by sequential read. We

would expect all three systems to perform well for this test because the read pattern follows both

the write pattern captured by the write-optimized systems and the sequential pattern captured by

FFS. In Figure 6-1, we see that the behavior clearly matches this expectation at 50% utilization.

Figure 6-2 shows similar behavior at 90% utilization, but all three systems show the effects of

the fragmentation of free space at the higher disk utilization. In Figure 6-1, nearly full disk band-

width is achieved, but performance is lower for all systems in Figure 6-2. (Notice the different

scales of the x-axes.)

During the initial sequential write, LFS performance is slowed due to garbage collection costs.

Before it can write the data, it must first generate free segments for new data writes by compacting

the scattered free space. LFS garbage collection costs are negligible during the second sequential

write — once the file is written, each new segment write tends to free one entire segment of previ-

ously written data.

The second sequential write and the sequential read proceed more efficiently for LFS than for

either FFS or write-anywhere because LFS pays garbage collection costs initially to move the pre-

allocated blocks out of the way. FFS and write-anywhere allocate the benchmark data around the

preallocated blocks and therefore pay the penalty to skip over them for each write and read. The

flatter portions of the write-anywhere curve correspond to writing data (or reading data written) in

regions of higher disk utilization. Notice that the write-anywhere curve begins to change when

approximately 740 MB or approximately 60% (50% data and 10% free space) of the 1.2 GB disk

93

has been written. This is the point at which the disk has been completely written once and the 10%

free space is scattered across the disk.

94

FIGURE 6-1. Write Sequential/Read Sequential, 50% Disk Utilization. This figure
shows the performance of FFS, LFS and write-anywhere for a microbenchmark that
consists of an initial sequential file write followed by a second sequential file write and a
sequential file read. The y-axis shows cumulative user data transferred by the
benchmark. From 0 to 625 MB is a initial sequential write of all the benchmark data.
From 625 to 1250 MB is another sequential write of all the benchmark data. From 1250
to 1875 MB is a sequential read of all the benchmark data. The x-axis shows cumulative
disk times for all data transferred, including any additional data transferred during LFS
garbage collection, during the benchmark as reported by the Dartmouth disk simulator .
The LFS simulator used includes the adaptive optimizations presented in Chapter 5.

FIGURE 6-2. Write Sequential/Read Sequential, 90% Disk Utilization. This figure
shows the performance of FFS, LFS and write-anywhere for a microbenchmark that
consists of an initial sequential file write followed by a second sequential file write and a
sequential file read. Before the benchmark begins, the disk is fragmented and the disk
utilization increased by allocating 40% of the disk blocks to data not referenced again
during the benchmark. The y-axis shows cumulative user data transferred by the
benchmark. From 0 to 625 MB is a initial sequential write of all the benchmark data.
From 625 to 1250 MB is another sequential write of all the benchmark data. From 1250
to 1875 MB is a sequential read of all the benchmark data. The x-axis shows cumulative
disk times for all data transferred, including any additional data transferred during LFS
garbage collection, during the benchmark as reported by the Dartmouth disk simulator.
The LFS simulator uses the adaptive optimizations presented in Chapter 5.

95

6.3.2. Random Write Followed By Sequential Read

Figures 6-3 and 6-4 show the results for the microbenchmark that performs a random write

followed by a sequential read. We expect FFS to perform poorly for the random write, since it

must seek for every block; by contrast, the read should proceed quickly since it follows the

sequential file layout. In contrast, we expect the write-optimized systems to perform well for the

file write, but poorly for the file read since it does not match the write pattern. Figure 6-3 shows

that at 50% utilization the behavior clearly matches these expectations. However, the behavior

changes somewhat at 90% disk utilization as shown in Figure 6-4.

As in Figure 6-2, LFS performs slightly worse than FFS and write-anywhere for the first

sequential write due to the initial garbage collection overhead. In the random write portion of the

benchmark, write-anywhere performs the best because it is able to place new data writes into any

available free space. Using the techniques outlined in Chapter 5, LFS is able to maintain reason-

able performance despite the random updates and high disk utilization. FFS performs the worst as

it struggles to maintain the sequential layout despite the non-sequential write patterns. However,

this investment in maintaining the sequential layout enables FFS to outperform both write-any-

where and LFS for the sequential read. If the file were read repeatedly, FFS would extend its lead

over the other alternatives.

96

FIGURE 6-3. Write Random/Read Sequential, 50% Disk Utilization. This figure
shows the performance of FFS, LFS and write-anywhere for a microbenchmark that
consists of an initial sequential file write followed by a random file write and a
sequential file read. The y-axis shows cumulative user data transferred by the
benchmark. From 0 to 625 MB is a initial sequential write of all the benchmark data.
From 625 to 1250 MB is a random write of all the benchmark data. From 1250 to
1875 MB is a sequential read of all the benchmark data. The x-axis shows cumulative
disk times for all data transferred, including any additional data transferred during
LFS garbage collection, during the benchmark as reported by the Dartmouth disk
simulator. The LFS simulator uses the adaptive optimizations presented in Chapter 5.

FIGURE 6-4. Write Random/Read Sequential, 90% Disk Utilization. This figure
shows the performance of FFS, LFS and write-anywhere for a microbenchmark that
consists of an inital sequential file write followed by a random file write and a
sequential file read. Before the benchmark begins, the disk is fragmented and the disk
utilization increased by allocating 40% of the disk blocks to data not referenced again
during the benchmark. The y-axis shows cumulative user data transferred by the
benchmark. From 0 to 625 MB is a initial sequential write of all the benchmark data.
From 625 to 1250 MB is a random write of all the benchmark data. From 1250 to
1875 MB is a sequential read of all the benchmark data. The x-axis shows cumulative
disk times for all data transferred, including any additional data transferred during
LFS garbage collection, during the benchmark as reported by the Dartmouth disk
simulator. The LFS simulator uses the adaptive optimizations presented in Chapter 5.

97

6.3.3. Writing and Reading the Same Non-Sequential Pattern

Figures 6-5 and 6-6 show the results for writing and reading the same non-sequential pattern.

We expect FFS to perform poorly for both reads and writes in this case and the write-optimized

systems to perform well for both reads and writes. This is clearly seen for the 50% disk utilization

experiment shown in Figure 6-5. Figure 6-6 shows the 90% utilization test. During the nonsequen-

tial write, FFS again performs the worst among the systems being studied because it maintains the

sequential layout despite the nonsequential write stream. However, in this case, the effort FFS

invests in careful data placement is not justified by an improvement in read performance. During

the read portion, LFS outperforms both FFS and write-anywhere because it best preserves the pat-

tern of the write stream, although doing so takes more time for writing the file than with the write-

anywhere system. This nearly balances in this case, but would favor LFS if the file were read

repeatedly.

98

FIGURE 6-5. Write and Read Non-Sequential Pattern, 50% Disk Utilization.
This figure shows the performance of FFS, LFS and write-anywhere for a
microbenchmark that consists of an inital sequential file write followed by writing
and reading the file in the same non-sequential pattern. The y-axis shows cumulative
user data transferred by the benchmark. From 0 to 625 MB is a initial sequential write
of all the benchmark data. From 625 to 1250 MB, all the benchmark data is written in
a non-sequential pattern. From 1250 to 1875 MB all the benchmark data is read in the
same pattern. The x-axis shows cumulative disk times for all data transferred,
including any additional data transferred during LFS garbage collection, during the
benchmark as reported by the Dartmouth disk simulator. The LFS simulator uses the
adaptive optimizations presented in Chapter 5.

FIGURE 6-6. Write and Read Non-Sequential Pattern, 90% Disk Utilization.
This figure shows the performance of FFS, LFS and write-anywhere for a
microbenchmark that consists of an inital sequential file write followed by writing
and reading the file in the same non-sequential pattern. Before the benchmark begins,
the disk is fragmented and the disk utilization increased by allocating 40% of the disk
blocks to data not referenced again during the benchmark.The y-axis shows
cumulative user data transferred by the benchmark. From 0 to 625 MB is a initial
sequential write of all the benchmark data. From 625 to 1250 MB, all the benchmark
data is written in a non-sequential pattern. From 1250 to 1875 MB all the benchmark
data is read in the same pattern. The x-axis shows cumulative disk times for all data
transferred, including any additional data transferred during LFS garbage collection,
during the benchmark as reported by the Dartmouth disk simulator. The LFS
simulator uses the adaptive optimizations presented in Chapter 5.

99

6.3.4. Microbenchmark Summary

These three simple benchmarks illustrate that neither LFS nor FFS nor write-anywhere sys-

tems dominate all workload patterns. Of course, their performance in any given environment will

depend on the interaction of reads and writes in the workload, the degree to which access patterns

follow file and directory units and the other factors I discussed in Chapter 4. Still, it is clear from

these results that LFS, FFS and write-anywhere systems are all unresponsive to actual read pat-

terns. They perform well when read patterns happen to match the default layout and poorly when

they do not. Data layout is further complicated by fragmentation and garbage collection, especially

at higher disk utilizations, making it difficult to determine when read performance might be poor

even for read patterns that do match the systems default layout. In the next section, I will present

an algorithm for reorganizing data on disk to match actual read patterns and for balancing read

performance with write performance.

6.4. Dynamic Reorganization

In this section, I discuss how to produce a disk layout that effectively supports a wider variety

read access patterns by (i) dynamically identifying related data, (ii) regrouping the related data and

(ii) balancing read and write performance. My intent is not to identify the ideal data reorganization

algorithm, but rather to show that it is feasible and that such adaptation is necessary to provide

robust file system read performance in a single system.

6.4.1. Identifying Related Data

Access graphs are a natural way of dynamically identifying related data [Tsangaris and

Naughton, 1991] [Griffioen and Appleton, 1994]. I build an access graph in which each node rep-

resents a file block. An edge from node A to node B indicates that block B was read from disk

immediately after block A. The edges are weighted by the number of such accesses. Many of the

100

graph edges can be eliminated while still capturing the strong relationships for which it is most

important to optimize. Intuitively, data blocks either have a few strong connections or many weak

connections. Specifically, I record four outgoing edges for each data block and use LRU replace-

ment within this set. For 8KB data blocks, this requires a storage overhead of about 1%.

The next challenge is to find a disk layout strategy to optimize for the read patterns captured in

the access graph. The optimal layout strategy would place blocks that are frequently accessed

together close to one another in order to minimize seek and rotational delays. Finding such a lay-

out is an application of the more general irregular graph partitioning problem. Maximizing the

number of internal edges within partitions and minimizing the number of external edges produces

a partitioning of the file blocks such that blocks in the same partition are frequently accessed

together, while blocks in different partitions are rarely accessed together.

The general irregular graph partitioning problem is NP-complete, but there exist heuristic

solutions in the literature [Barnard and Simon, 1993][Hendrickson and Leland, 1995]. I use a sim-

ple dynamic graph partitioning algorithm based on these heuristic solutions. For each disk read, I

increment the weight of the edge between the current block and the previous block read or create a

new edge if one does not already exist. If the previous block is in a different partition than the cur-

rent block, I shift existing partition boundaries to bring the nodes in question together if doing so

results in new partitions that reduce the total weight of inter-partition edges.

6.4.2. Data Reorganization

I use the partitioned access graph to guide targeted improvements to the existing data layout.

This information could actually be used in any of the existing systems I have discussed to regroup

related data that is scattered by the system’s default layout policy, but in this study, I investigate

dynamic reorganization within the context of an LFS.

101

LFS is an especially attractive choice for several reasons. First, given the current trend towards

write-optimized file systems, it is particularly interesting to investigate improving read perfor-

mance in the context of a write-optimized system. Second, LFS includes support for on-line data

movement as it is required for garbage collection.

Such reorganization of the data on disk is difficult in some systems. For example, WAFL sup-

ports its snapshots by way of a file mapping each physical disk block to the snapshots which refer

to it [Hitz et al., 1995]. (A block can be reused when no remaining snapshot refers to it.) Moving

data to a new physical location would require transferring this information and modifying all the

snapshots which point to it. Since snapshots are read-only once taken, this would violate a princi-

ple design constraint in the system.

To support dynamic reorganization, I conceptually divide the LFS log into two logs: the main

write log and the reorganization log. These two logs are logically separate, but are threaded

through the same collection of physical disk segments much like mirrored and RAID-5 data co-

exist in AutoRAID [Wilkes et al., 1995]. Any segment can contain data from the main write log or

the reorganization log.

Reorganizing a partition of the access graph consists of writing all of its members together into

the reorganization log. Unlike in the main write log, I attempt to place logically sequential seg-

ments of the reorganization log together on disk to accommodate groups of data that span segment

boundaries (e.g. streams of related data or groups of related data that are larger than a single seg-

ment). When I need to write a segment to the reorganization log, I choose the segment immedi-

ately following it on disk if it is available.

Partitions are eligible for reorganization if the partition members are not already clustered

together and if the predictive value of the edges joining the partition members has been demon-

102

strated. (I define the value of a partition to be the sum of the weight of all inter-partition edges

divided by the number of data blocks in the partition and require a partition’s value to exceed 2

before it can be reorganized.) I currently reorder candidate partitions immediately when they

become eligible, but partitions could be reorganized at other convenient times, such as during idle

periods, when a partition is brought into memory, or when a partition is about to be evicted from

memory.

6.4.3. Balancing Reads and Writes

The access graph also serves as a tool for balancing read and write performance. When a block

that is currently in the reorganization log is written, I first write a copy of the new data at the tail of

the main write log. Then, while the block is still in memory, I patch a copy on top of its previous

location in the reorganization log. (This preserves the recovery property of the log without disturb-

ing the read locality of the cluster.) This can be viewed as a special case of hole-plugging garbage

collection in which a new block is placed in its previous location.

The second write into the reorganization log adds to the write cost, but whenever a block in the

access graph is written to disk, I decrement the weight of that block’s edges. Therefore, every time

a block is written, its ties to the other partition members weaken. Eventually, if the block is written

more frequently than it is read, its connections to other partition members become severed and it

will no longer be re-written into the reorganization log.

Overall, this approach allows data to move adaptively between read-optimized and write-opti-

mized storage depending on the dominant access pattern. Data written, but not read in a predict-

able manner, will be write-optimized. Data written and then read repeatedly in a predictable way

will be read-optimized. When access patterns alternate between reads and writes, the data will also

shift between read-optimized and write-optimized storage.

103

This is similar to the write-ahead logging approach I discussed in Chapter 3. Write-ahead log-

ging file systems first write new updates into a log and then into the semantically-organized main

file system. This approach, however, allows for non-semantic organizations. Another important

difference is that much of the data written does not migrate into the reorganization log at all, e.g.

data for which the default policy arranges data as it is read, data which is overwritten or deleted

before being read frequently and data which is not read predictably. In this way, dynamic reorgani-

zation focuses reorganization efforts— investing in careful placement only when the value of that

investment has been demonstrated.

6.5. Performance of LFS With Dynamic
Reorganization

In this section, I examine the performance of dynamic reorganization. First, I use microbench-

marks to explore how its performance is affected by various read and write patterns, disk utiliza-

tions and disk performance characteristics. Second, I examine its performance on a long-term trace

of file system usage taken in an academic environment and a trace of the TPC-D decision support

benchmark.

6.5.1. Microbenchmarks

I begin my evaluation by comparing LFS to LFS with dynamic reorganization for the

microbenchmarks described in Section 6.3.

6.5.1.1. Adjusting to Observed Read Patterns

Figure 6-7 shows all three microbenchmarks at 50% disk utilization. The area from 0 to 1875

MB is the original benchmark. In all cases, there is no change between LFS and LFS with dynamic

reorganization in this region because the read pattern has only occurred once and no prediction can

104

be made without historical information. This could mean lost organizational opportunities for

workloads in which data is read only once. However, it allows reorganization efforts to be focused

on data for which the value of a new organization has been demonstrated.

I extend the read portion of the benchmark by repeating the same read pattern four additional

times. During the first read, dynamic reorganization observes the read pattern. During the second

read, the graph edges demonstrate their predictive value and dynamic reorganization begins to

adjust the disk layout where appropriate. For two of the access patterns, the original layout pro-

duced by LFS already matches the read pattern and therefore no corrections are made. However,

for random write followed by sequential read, disk requests are issued to adjust the data layout to

the observed patterns. This reorganization traffic causes a temporary drop in performance, but the

remaining reads benefit from the resulting disk layout. In this test, it takes approximately 2.5

sequential read passes to amortize the cost of the reorganization. Although I do not attempt it here,

it may be possible to decide whether to reorganize a partition based on both the projected cost of

reorganization and a prediction of the number of times the partition will be read before being over-

written or deleted. Such a prediction might be based on the number of times the data has already

been read since it was last written or on observations of the rate at which data in the entire work-

load is overwritten or deleted.

To focus on read performance, Figure 6-8 plots the average disk read time over the course of

the same three benchmarks at 50% disk utilization. As suggested by the previous figure, both LFS

and LFS with dynamic reorganization maintain a consistently low average read time for the bench-

marks in which data is read as it is written. For random write followed by sequential read, both

begin with a high average read time. This level of performance persists for LFS throughout the

benchmark. For LFS with dynamic reorganization, reorganization traffic first increases read

latency by forcing the disk head to alternate between writing to the reorganization log and reading

105

user data. However, once reorganization is complete, read latency drops to match the performance

for those read patterns that matched the original write pattern. This performance improvement is

enjoyed by all subsequent iterations of the same read pattern.

106

FIGURE 6-7. LFS and LFS with Dynamic Reorganization at 50% disk
utilization. This figure shows the performance of LFS and LFS with dynamic
reorganization for the three microbenchmarks discussed in Section 6.3. The y-axis
shows cumulative user data transferred by the benchmark. From 0 to 625 MB is a
initial sequential write of all the benchmark data. From 625 to 1250 MB is a write of
all the benchmark data in the pattern indicates by the benchmark. From 1250 to 4375
MB is five reads of all the benchmark data in the pattern indicated by the benchmark.
The x-axis shows cumulative disk times for all data transferred, including any
additional data transferred during LFS garbage collection, during the benchmark as
reported by the Dartmouth disk simulator.

FIGURE 6-8. Average Disk Read Time At 50% disk utilization. This figure plots
the average time for LFS with and without dynamic reorganization to read an 8KB
block from disk for the three microbenchmarks discussed in Section 6.3. The total
amount of user data read from disk by the benchmark is shown on the x-axis. The
sequential read pattern repeats every 625 MB. The y-axis shows the average 8KB
read time as reported by the Dartmouth disk simulator.

107

6.5.1.2. The Effect of Disk Utilization

Figure 6-9 and Figure 6-10 show the impact of higher disk utilization on dynamic reorganiza-

tion. In Figure 6-9, we see that the overhead of dynamic reorganization is higher at higher disk uti-

lization. At higher disk utilization, it is more difficult to produce the extents of free space required

to rewrite the data into clusters. Reads to the reorganized data are also less efficient because it is

more difficult to find adjacent free segments in which to keep subsequent pieces of the reorganiza-

tion log together. This can be clearly seen in Figure 6-10 where reorganization does not achieve

the same level of performance as with 50% disk utilization.

108

FIGURE 6-9. The Effect of Disk Utilization on Dynamic Reorganization. This
figure shows the performance of LFS and LFS with dynamic reorganization for
random write followed by sequential read at both 50% and 90% disk utilization. At
90% disk utilization, the disk is fragmented and the disk utilization increased before
the benchmark begins by allocating 40% of the disk blocks to data not referenced
again during the benchmark. The y-axis shows cumulative user data transferred by
the benchmark. From 0 to 625 MB is a initial sequential write of all the benchmark
data. From 625 to 1250 MB is a random write of all the benchmark data. From 1250
to 4375 MB is five sequential reads of all the benchmark data. The x-axis shows
cumulative disk times for all data transferred, including any additional data
transferred during LFS garbage collection, during the benchmark as reported by the
Dartmouth disk simulator.

FIGURE 6-10. The Effect of Disk Utilization on Average Disk Read Time. This
figure plots the average time to read an 8KB block from disk for random write
followed by sequential read at both 50% and 90% disk utilization. At 90% disk
utilization, the disk is fragmented and the disk utilization increased before the
benchmark begins by allocating 40% of the disk blocks to data not referenced again
during the benchmark. The total amount of user data read from disk by the
benchmark is shown on the x-axis. The sequential read pattern repeats every 625 MB.
Reorganization is completed at 1250 MB. The y-axis shows the average 8KB read
time as reported by the Dartmouth disk simulator.

109

6.5.1.3. The Effect of Improving Disk Performance

Figure 6-11 examines the effect of improving disk performance on the behavior of dynamic

reorganization by plotting performance for both the Dartmouth disk simulator and DiskSim. In the

pre-reorganization phase of Figure 6-11, the difference in average read performance is dominated

by the difference in seek and rotational delay. In the post-reorganization phase, the difference in

performance is dominated by the difference in disk bandwidth. DiskSim represents a faster disk

than the Dartmouth disk simulator; however, DiskSim has lower performance than most disks

available at the time this dissertation was written. Since bandwidth is improving faster than

latency, this gap is likely to increase over time. We would expect to see an even bigger relative

performance gain for the faster modern disks.

FIGURE 6-11. The Effect of Improving Disk Performance on Average Disk Read
Time. This figure plots the average time to read an 8KB block from disk for a
random write pattern followed by a sequential read. The total amount of user data
read from disk by the benchmark is shown on the x-axis. The sequential read pattern
repeats every 625 MB. Reorganization is completed at 1250 MB. The y-axis shows
the average 8KB read time as reported by the Dartmouth disk simulator (slow disk) or
DiskSim (fast disk).

110

6.5.2. Measured Traces

Up to this point, I have examined the performance of dynamic reorganization only on a select

few synthetic traces. We have seen that dynamic reorganization improves performance for

repeated read patterns. We have seen that it can both increase performance by achieving a layout

better suited to actual read patterns and decrease performance with the reorganization traffic. We

have also seen the impact of changes in disk utilization and disk performance characteristics. To

examine the net effect of dynamic reorganization on more realistic workloads, I examine its per-

formance on measured traces as well.

6.5.2.1. The Effect of a Long-term Trace

Long term traces are important because they can capture how read patterns change over time

and how writes, deletes and garbage collection interact over time to produce the actual data layout.

Roselli monitored fourteen desktop machines belonging to the graduate students, staff and faculty

of a computer science research group for over one year [Roselli, 1998]. I examine a three month

portion of this trace directed to a file system housing primarily executable files. In Figures 6-12

and 6-13, the performance of LFS with and without dynamic reorganization is compared for this

trace at 90% disk utilization using the Dartmouth disk simulator. Dynamic reorganization

improves overall disk performance by 12% and average read performance by 16%. Also, notice

that the improvement in average read performance is larger towards the end of the trace where

more information about past read patterns can be exploited.

111

FIGURE 6-12. LFS and LFS with Dynamic Reorganization at 90% disk
utilization. This figure shows the performance of LFS and LFS with dynamic
reorganization for the research group file system activity. The x-axis shows
cumulative disk times for all data transferred, including any additional data
transferred during garbage collection, as reported by the Dartmouth disk simulator.
The y-axis shows cumulative user data transferred by the benchmark.

FIGURE 6-13. Average Disk Read Time. This figure plots the average time for LFS
with and without dynamic reorganization to read an 8KB block from disk for the
research group file system activity. The total amount of user data read from disk by
the benchmark is shown on the x-axis. The y-axis shows the average 8KB read time
as reported by the Dartmouth disk simulator.

112

6.5.2.2. The Effect of Changing Access Patterns

I also examine LFS and LFS with dynamic reorganization on a trace of the TPC-D decision

support benchmark run on SQLServer [Matthews, 1999]. The 17 TPC-D queries are specifically

designed to represent a wide variety of access patterns. For example, some tables are scanned

sequentially in one query and accessed through their primary index in another. The temporary area

is especially subject to changing access patterns. For example, a portion of it might be used to

build an index needed at one point in the query; the index is then discarded and the same space

reused to sort intermediate results. In this environment, there are many read and write accesses to

the same data and there is often little time to accumulate useful historical information before the

read patterns change. Therefore, this workload stresses the ability of dynamic reorganization to

handle competing access patterns to the same data — both read and write access to the same data

and multiple patterns for reading the same data.

In Figure 6-14, I show average read performance with 10 repetitions of the entire TPC-D

workload. Overall, dynamic reorganization results in a 6.5% improvement in average read perfor-

mance. In Figure 6-15, I show the average read performance with 10 repetitions of each query to

isolate the impact of dynamic reorganization on individual queries. By analyzing the query plans

produced by SQLServer for each query, I observe that queries which access tables through the

indices, rather than with a sequential scan, benefit most from dynamic reorganization. This indi-

cates that dynamic reorganization is clustering data in the tables together with their indices. Clus-

tering based on the directory hierarchy would not capture this effect as each table is stored in a

different file than the index on that table.

Figures 6-16 and 6-17 show the overall disk performance for both cases. For this workload, it

would be necessary to perform the reorganization in idle time to improve overall disk perfor-

mance.

113

FIGURE 6-14. Average Disk Read Time. This figure plots the average time for LFS
with and without dynamic reorganization to read an 8K block from disk for 10
iterations of all of the 17 TPC-D queries. The total amount of user data read from disk
by the benchmark is shown on the x-axis. The y-axis shows the average 8k read time
as reported by the Dartmouth disk simulator.

FIGURE 6-15. Average Disk Read Time. This figure plots the average time for LFS
with and without dynamic reorganization to read an 8K block from disk for 10
iterations of each of the 17 TPC-D queries. The total amount of user data read from
disk by the benchmark is shown on the x-axis. The y-axis shows the average 8k read
time as reported by the Dartmouth disk simulator.

114

FIGURE 6-16. LFS and LFS with Dynamic Reorganization at 90% disk
utilization. This figure shows the performance of LFS and LFS with dynamic
reorganization for 10 iterations of all of the 17 TPC-D queries at 90% disk utilization.
The y-axis shows cumulative user data transferred by the benchmark. The x-axis
shows cumulative disk times for all data transferred (including any additional data
transferred during garbage collection).

FIGURE 6-17. LFS and LFS with Dynamic Reorganization at 90% disk
utilization. This figure shows the performance of LFS and LFS with dynamic
reorganization for 10 iterations of each of the 17 TPC-D queries at 90% disk
utilization. The y-axis shows cumulative user data transferred by the benchmark. The
x-axis shows cumulative disk times for all data transferred (including any additional
data transferred during garbage collection).

115

6.6. Related Work

Defragmenting tools have been in widespread use for some time especially for PC file systems

[Diskeeper, 1999][Norton Utilities, 1999]. These tools reorganize the entire file system at once

and require that they have exclusive access to the system while performing their changes. There-

fore, they are not well suited to on-line data reorganization. In addition, most simply regroup indi-

vidual files that have become scattered over time. Since most files are small, there is a limit to the

benefit that can be achieved with this approach even when files are accessed sequentially in their

entirety. The Intel Application Launch Accelerator included in Windows 98 actually profiles

application execution and reorganizes data on disk to serialize disk blocks needed for the applica-

tion’s launch sequence and other predictable portions of the application’s execution [Grimsrud,

1998] [Intel, 1998]. This reorganization is not limited to regrouping whole files and the designers

have documented that non-sequential access patterns are actually quite common.

Some systems have shown a benefit to reorganizing the data on disk based on its frequency of

access [Wong, 1983] [Musser and Schimke, 1992] [Ruemmler and Wilkes, 1991] [Vongsathorn

and Carson, 1990] [Akyürek and Salem, 1995]. These systems move the most frequently accessed

data to the center of the disk where it is most likely to be near the current disk head position at any

given time. The next most frequently accessed data is moved to the cylinders adjacent to the center

most cylinder and so on. This arrangement is referred to as an organ pipe and has been shown to be

optimal for a biased random request stream [Wong, 1983]. Systems using this technique have

reported up to 30% improvement, but it can also decrease performance when related data is

located on opposite sides of the organ pipe. Staelin combined this approach with the whole-file

grouping by migrating whole files to the center of the disk based on frequency of access [Staelin,

1991]. Similarly, this approach could be combined with dynamic reorganization by migrating fre-

quently accessed partitions to the center of the disk, but I did not attempt this.

116

Geist et. al examine cylinder request streams and find a strong Markovian dependence [Geist

et al., 1994]. They also advocate cylinder remapping as a technique for reducing mean seek dis-

tance in both single and mirrored disk systems. They present expressions to reflect mean seek dis-

tance for both single and mirrored disk systems. These expressions are used as energy functions in

simulated annealing and geometric annealing optimization routines in order to find permutations

that deliver reduced mean seek distances under stochastically equivalent workloads.

Identifying groups of objects that are accessed together in a persistent object base is much like

identifying file blocks that are read together. Tsangaris and Naughton present a formal framework

for evaluating the problem of optimal clustering [Tsangaris and Naughton, 1992]. Within this

framework, they illustrate that although frequency-based clustering is ideal for a request stream

that is as sequence of independent and identically distributed random variables [Wong, 1983], it is

nonoptimal for workloads with locality. They define an optimal clustering to be one that mini-

mizes the average working set of the problem as a formal optimization problem for determining

the optimal object clustering in object based as a formal optimization problem and show the effec-

tiveness of a clustering method based on weighted access graph partitioning.

Griffeon and Appleton dynamically building a graph in which files are nodes and edges repre-

sent subsequent accesses in order to guide prefetching [Griffioen and Appleton, 1994]. They

prefetch files that follow the current file with a probability greater than a given threshold.

6.7. Conclusions

The layout policies of existing systems are unresponsive to actual read patterns and perform

well only for read patterns that match the default policy. Especially in the presence of high disk

utilization, fragmentation of free space and garbage collection complicate data layout and can

degrade performance even for those read patterns that do match a system’s default policy.

117

Dynamic reorganization builds a block access graph of past read patterns and uses that infor-

mation to regroup related data. As write-optimized systems have found ways to make disk layout

responsive to actual write patterns, dynamic reorganization provides a tool for making disk layout

responsive to actual read patterns as well. In addition, it helps to find the right balance between

read and write performance with adaptive methods that invest in reorganization only when the

value of a new organization is demonstrated. However, it is questionable whether the benefit of

dynamic reorganization on common case workloads is sufficient to justify the additional complex-

ity and overhead of the adaptation.

118

7 Conclusions

In this final chapter, I summarize the contributions of this dissertation, propose directions for

future work and reflect on how this work relates to the broader context of designing future com-

puter systems.

7.1. Summary

In this dissertation, I propose and evaluate a variety of adaptive file system methods. I wanted

to expose the problems of non-adaptive file systems and to demonstrate that relatively simple

adaptive methods can produce systems that are significantly more robust than existing systems to

changing hardware and diverse workload characteristics.

In pursuit of this goal, I make three main contributions to improving LFS write performance.

First, I show how to choose the LFS segment size by trading transfer efficiency against cleaning

efficiency. Second, I present an adaptive garbage collection algorithm that combines traditional

LFS cleaning with hole-plugging. This algorithm dynamically adapts to changes in disk utilization

and workload to avoid the traditional LFS performance cliff at high disk utilizations, while still

preserving the advantage LFS has at lower disk utilizations. Third, I show how to further reduce

cleaning overhead by taking advantage of cached segments when cleaning. Together, these

enhancements make LFS more stable over a wider range of workloads by eliminating its dramatic

worst case performance.

119

I also contribute to providing robust read performance. First, I demonstrate how non-adaptive

layout policies fail to provide robust read performance when read patterns do not match the default

layout or when the default layout is disturbed by fragmentation or garbage collection. Second, I

present a dynamic reorganization algorithm that uses past read access patterns to predict future

read patterns and groups data together on disk accordingly. Third, within the context of LFS, I

show how dynamic reorganization can be used to augment a write-optimized system by suggesting

targeted improvements to existing data layout.

The adaptive methods I evaluate vary in their complexity and in their demonstrated benefits.

The relatively simple write-optimizations presented in Chapter 5 demonstrated up to a 10 fold

increase in overall write performance relative to original LFS for the workloads I examined. The

dynamic reorganization algorithm presented in Chapter 6 was more complex and demonstrated

modest benefits (under 20%) for real workloads. In this light, I believe that the write optimizations

I presented met the stated goal of simple, adaptive algorithms that provide high performance

across a wider range of disk parameters and workloads. However, in my estimation, dynamic reor-

ganization would require a simpler algorithm or a more dramatic benefits to warrant to its inclu-

sion in a production file system.

7.2. Future Directions

There are several ways in which I think it would be interesting to extend this work. The first

would be to perform additional experiments in the current simulation environment. The second

would be to implement a fully functional file system based on these principles. The third would be

to develop a formal model of the system in which proofs about its optimally or robustness could be

made. Finally, it would be interesting to reexamine the role of the directory hierarchy in both the

file system interface and in the organization of data on disk.

120

7.2.1. Additional Simulation Experiments

There are a huge number of design choices that could be studied and potentially made adap-

tive.

I would especially like to investigate simpler policies for read reorganization. For example, it

would be interesting to see if the overhead of maintaining the access graph could be significantly

reduced by assuming semantic access patterns and only recording non-sequential access patterns.

One initial step would be to maintain a file rather than a block access graph.

In Chapter 6, I maintained a reorganization log in addition to the main write log. It would also

be interesting to maintain different logs based on the source of the data and adapt the degree to

which data is demultiplexed into separate logs. For example, separate logs could be maintained per

client, per user or per application. Data from separate source could either be combined or isolated

depending on the amount of traffic or certain characteristics like the frequency of data of data

commit or the ratio of read to write traffic. In a system with multiple granularities of logging, it

would be interesting to characterize how data flows between and the degree of read sharing among

various logs.

In the current implementation of dynamic reorganization, I reorganize partitions as soon as

they become eligible (i.e. the members are not already clustered together and the partition’s value

exceeds 2). In practice, it would certainly make sense to take advantage of idle time to accomplish

reorganization. This brings up some interesting issues including how to detect when it would be

globally optimal to reorganize immediately, even if some user activity is delayed in the short term,

and how to prioritize the use of idle time between cleaning, reorganizing and other potential back-

ground activities [Golding et al., 1995].

121

It would be interesting to examine the relationship between dynamic reorganization and

prefetching. Once reorganized, we can prefetch entire clusters. This may reduce the cache miss

rate compared to whole file prefetching and automatic prefetching algorithm presented in

[Griffioen and Appleton, 1994]. A logical next step would be to dynamically adjust the cluster size

to balance transfer efficiency of larger clusters with the greater risk of prefetching unrelated data.

7.2.2. Adaptive File System Implementation

Another logical extension of this work would be the full implementation and deployment of an

adaptive file system. Many researchers have noted the important synergy between implementation

and simulation. They each contribute to complete view of the problem being examined — simula-

tion by focusing on the essential elements of the problem and implementation by ensuring that all

the complexities of the real world have been accounted for. Alone, each can have blind spots -

simulation from modeling error and implementation from the presence of overheads that are not

fundamental to the approach being studied. However, the man power required to proceed on both

fronts is substantial.

In the earlier part of my graduate career, I had a taste of this synergy as a member of the xFS

serverless network file system project [Anderson et al., 1996]. The xFS design was based on

extensive simulations and the xFS team spent long hours implementing, debugging, configuring

and testing a fairly fragile prototype. The implementation provided an important proof-of-concept,

but simulation provided many of the important ideas— new caching algorithms, provably correct

coherency algorithms and a sketch of the potential performance improvements which were not

fully realized in the prototype.

122

7.2.3. Formal File System Models

The control theory community studies adaptivity from the point of view of formal mathemati-

cal models that can be used to express strong guarantees about a system’s behavior. Some exam-

ples include proving the optimally of a given algorithm and proving that certain constraints on

system behavior can always be satisfied. Control theory is concerned with feedback-based adapta-

tion which is provably stable. At this time, the control theory community is actively engaged in

modeling diverse and complex systems, like air traffic control systems and biological systems. I

believe it would be interesting and fruitful to model storage system behavior in a similar way.

From a control theory perspective, modeling new systems provides opportunities to apply existing

results and may motivate new results. From an operating system perspective, an optimal solution

even if it was not achievable in practice may inspire heuristic solutions and would provide an

upper bound as a point of comparison. Some specific issues left open by this thesis include proving

an upper bound on garbage collection costs and bounding the number of times a block may be

shifted between competing disk organizations.

7.2.4. File System Organization

Dynamic reorganization builds a graph of data relationships. The directory hierarchy visible to

the user is also a graph of data relationships. I can envision two possible directions for leveraging

this overlap. First, it would be interesting to detect when the directory structure is adequate for

capturing the dynamic access patterns and maintain additional access information only when the

existing structure is not sufficient. Secondly and perhaps more naturally, it would be interesting to

explore other ways to expose the data available in the file system to the user. From the user’s per-

spective, the directory hierarchy is an unnecessarily restrictive way of naming and categorizing

data; why should a user have to choose a single long stream of pathnames to express how a given

file relates to all the other data in the file system? From the perspective of data location, I have

123

illustrated that it is more efficient to base storage organization on dynamic access patterns instead

of on the directory hierarchy.

7.3. The Bigger Picture

7.3.1. Additional Benefits of Log-Structure

I have mentioned many benefits of log-structure in earlier sections of this dissertation. In this

section, I discuss some less recognized benefits of log-structure that I think makes it particularly

well-suited to be the underlying architecture for storage systems of the future.

First, log-structure is inherently flexible. Data can be located anywhere in the log. This flexi-

bility allows it to easily incorporate desirable features from other systems where they are appropri-

ate and to avoid the overhead when it is not needed. All but essential tasks can be deferred. This

flexibility allows the system to provide high-burst performance by streamlining the critical path

and deferring garbage collection and reorganization into idle time.

Second, log-structure is a natural way of accommodating the division of labor between the

logical data management and the internal details of the underlying storage system. For example,

viewing the file system as a collection of large data containers called segments is much easier to

extend to complex storage systems than viewing it as a collection of cylinder groups.

Finally, I believe that the log-structure captures the fundamental characteristics of data within

a storage system - newly written data flows through the levels of a storage hierarchy where it

forms various pools for efficient storage. The most recent updates are grouped together allowing

them to flow through the storage system, isolating them for special processing and protecting the

more stable, organized data from their volatility. As these updates age, they are integrated more

tightly into the rest of the system. New updates which began as a unit are separated to allow more

124

efficient storage and retrieval. This same structure exists whether the recent updates are staged in

memory for transfer to disk, staged on a PDA for transfer to a connected host or staged at one site

for backup to a redundant site.

Log-structure is also a natural way to collect data into distinct streams based on certain logical

properties of the data. It is natural to imagine streams of data merging and diverging according to

their source, their destination or their intended use. For example, traffic from multiple users and

applications are channeled into a single log in order to amortize the costs of committing data to

stable storage. This traffic may later be diverged in order to fill in the small areas of fragmented

free space or diverged into groups of related data.

7.3.2. Adaptive Methods and Computer Systems of the Future

Computer scientists have successfully delivered tools of such power that they have revolution-

ized how we work, play and communicate. Computers are improving at an exponential rate

according to almost every metric. Yet, many users find themselves saying “But I can’t get it to do

anything!”. In many ways, it is a testimony to the power of the tool computer science has created

that many of the key challenges today seem to be making all this power user friendly and main-

tainable. It is not surprising that many areas of computer science are turning to self-tuning, self-

monitoring, self-configuring computer systems. We are beginning to turn the power of the tool

inward to make itself more automatic, more usable and therefore more useful.

Building adaptive systems requires innovation on many fronts. It requires methods for observ-

ing workload and environmental characteristics. It requires models that predict the performance of

alternatives under a variety of circumstances and that evaluate the trade-offs between alternate

algorithms. It often requires a “common currency” into which various factors can be weighted. It

125

requires an analysis of when the benefits of adaptation outweigh the costs and when the adaptation

algorithms are stable.

For example, computer architecture has been investigating general purpose versus reconfig-

urable versus customized processors. I would expect that same trend to move its way up through

the building blocks of computer systems. For each layer in turn, optimizing for some preconceived

common case will become unacceptable and the tug-of-war between customization and adaptation

will need to be played out. In operating system design, optimization for the common case has been

the norm. My opinion is that the future of operating systems lies in adaptive systems that can truly

fulfill the promise of efficiently, reliably and robustly mediating the interaction between varied

applications demands and rapidly changing hardware.

7.4. Conclusion

My thesis is that the systematic application of simple adaptive methods to file system design

can produce systems that are significantly more robust to changing hardware and diverse work-

loads than existing systems. I present modifications to the log-structured file system that allow it to

provide robust write performance in a wide range of environments. I also present a dynamic reor-

ganization algorithm that makes disk layout responsive to actual read patterns. I evaluate these

adaptive algorithms with trace driven simulation on a combination of synthetic and measured

traces. I find that simple adaptive algorithms can dramatically improve worst case performance

and can allow average case performance to scale with improvements in disk technology.

126

8 Bibliography

[Akyürek and Salem, 1995] S. Akyürek and K. Salem, “Adaptive Block Rearrangement,” ACM

Transactions on Computer Systems, 13(2):89–121, May 1995.

[Anderson et al., 1995] T. Anderson, M. Dahlin, J. Neefe, D. Patterson and R. Wang, “Serverless

Network File Systems,” Proceedings of the Fifteenth ACM Symposium on Operating Systems

Principles, pp. 109-126, December 1995.

[Anderson et al., 1996] T. Anderson, M. Dahlin, J. Neefe, D. Patterson and R. Wang, “Serverless

Network File Systems,” ACM Transactions on Computer Systems, 14(1):41-79, February

1996.

[Arlitt and Williamson, 1996] M. Arlitt and C. Williamson, “Web Server Workload Characteriza-

tion: The Search for Invariants,” Proceedings of the 1996 ACM Sigmetrics Conference on

Measurement and Modeling of Computer Systems, pp. 126–137, May 1996.

[Arpaci-Duseeau et al., 1998] A. Arpaci-Dusseau, D. Culler, and A. Mainwaring, “Scheduling with

Implicit Information in Distributed Systems,” Proceedings of the 1998 ACM Sigmetrics Con-

ference on Measurement and Modeling of Computer Systems, pp. 233-243, June 1998.

[Baker et al., 1991] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and J. Ousterhout, “Measure-

ments of a Distributed File System,” Proceedings of Thirteenth ACM Symposium on Oper-

ating Systems Principles, pp. 198–212, December 1991.

127

[Barnard and Simon, 1993] S. Barnard and H. Simon, “A Fast Multilevel Implementation of Recur-

sive Spectral Bisection for Partioning Unstructured Problems,” Proceedings of the Sixth

SIAM Conference on Parallel Processing for Scientific Computing, pp. 711-718, 1993.

[Berkeley Trace Repository, 1999] Berkeley File System Trace Repository, http://dawn7.berke-

ly.edu:8080.

[Birrell et al., 1993] A. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart, “The Echo Distributed

File System,” Digital Equipment Corporation Systems Research Center Technical Report

111, September 1993.

[Blaze and Alonso, 1992] M. Blaze and R. Alonso, “Dynamic Hierarchical Caching in Large-scale

Distributed File Systems,” Proceedings of the Twelfth International Conference on Distrib-

uted Computing Systems, June 1992.

[Blackwell et al., 1995] T. Blackwell, J. Harris, and M. Seltzer, “Heuristic Cleaning Algorithms in

Log-Structured File Systems,” Proceedings of the 1995 Winter USENIX Technical Confer-

ence, pp. 277-288, January 1995.

[Bolosky et al., 1996] W. Bolosky, J. Barrera, R. Draves, R. Fitzgerald and Givson, “The Tiger Vid-

eo Fileserver,” Microsoft Research Technical Report MSR-TR-96-09, April 1996.

[Bolosky et al., 1997] W. Bolosky, R. Fitzgerald and J. Douceur, “Distributed Schedule

Management in the Tiger Video Fileserver,” Proceedings of the Sixteenth ACM Sym-

posium on Operating Systems Principles , pp. 212-223, October 1997.

[Borowsky et al., 1997] E. Borowsky, R. Golding, A. Merchant, L. Schreier, E. Shriver, M. Spa-

sojevic, and J. Wilkes, “Using Attribute-managed Storage to Achieve QoS,” Fifth Interna-

tional Workshop on Quality of Service, June 1997.

128

[Cao et al., 1995] P. Cao, E. Felten, A. Karlin, and K. Li, “Implementation and Performance of In-

tegrated Application-Controlled Caching, Prefetching, and Disk Scheduling,” Proceedings

of the 1995 ACM Sigmetrics Conference on Measurement and Modeling of Computer Sys-

tems, pp. 188–197, May 1995.

[Chang and Gibson, 1999] F. Chang and G. Gibson, “Automatic I/O Hint Generation Through

Speculative Execution,” Proceedings of the Third Symposium on Operating Systems Design

and Implementation, pp. 1–14, February 1999.

[Chao et al., 1992] C. Chao, R. English, D. Jacobson, A. Stepanov, and J. Wilkes, “Mime: A High

Performance Parallel Storage Device with Strong Recovery Guarantees,” Hewlett-Packard

Technical Report HPL-CSP-92-9, March 1992.

[Chen et al., 1994] P. Chen, E. Lee, G. Gibson, R. Katz, and D. Patterson, “RAID: High-Perfor-

mance, Reliable Secondary Storage”, ACM Computing Surveys, 26(2):145-188, June 1994.

[Chen et al., 1996] P. Chen, W. Ng, S. Chandra, C. Aycock, G. Rajamani, and D. Lowell, “The Rio

File Cache: Surviving Operating System Crashes,” Proceedings of the 7th International Con-

ference on Architectural Support for Programming Languages and Operating Systems, pp.

74–83, October 1996.

[BSD4.4-Lite Source, 1994] Computer Systems Research Group, University of California at Ber-

keley, 4.4BSD-Lite Source CDROM, USENIX Association and O’Reilly & Associates,

1994.

[Chutani et al., 1992] S. Chutani, O. Anderson, M. Kazar, B. Leverett, W. Mason, and R. Sied-

botham, “The Episode File System,” Proceedings of the 1992 Winter USENIX Technical

Conference, pp. 43–60, January 1992.

[Clark, 1992] R.N. Clark, Introduction to Automatic Control Systems, Wiley, 1992.

[Custer, 1994] H. Custer, Inside the Windows NT File System, Microsoft Press, 1994.

129

[Dahlin et al., 1994a] b Dahlin, Michael, Randy Wang, Thomas Anderson, and David Patterson, “A

Quantitative Analysis of Cache Policies for Scalable Network File Systems,” Proceedings of

the 1994 ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems,

pp. 150–160, May 1994.

[Dahlin et al., 1994b] M. Dahlin, R. Wang, T. Anderson, and D. Patterson, “Cooperative Caching:

Using Remote Memory to Improve File System Performance,” Proceedings of the First Sym-

posium on Operating Systems Design and Implementation, pp. 267-280, November 1994.

[Dahlin, 1996] M. Dahlin, “Serverless Network File Systems,” University of California at Berkeley

Dissertation, Technical Report UCB/CSD-96-900, March 1996.

[Compaq Digital, 1999] Compaq DIGITAL FX!32, “White Paper: How DIGITAL FX!32 works,”

http://www.digital.com/amt/fsw32/fx-white.html, 1999.

[Diskeeper, 1999] Diskkeeper Windows NT Defragmentation Utility. http://www.defragmenta-

tion-tools.com, 1999.

[DISK/TREND, 1998] DISK/TREND, Inc., “1998 DISK/TREND Report,” 1925 Landings Drive,

Mountain View, CA 94043, http://www.disktrend.com.

[DISK/TREND, 1999] DISK/TREND, Inc., “1999 DISK/TREND Report,” 1925 Landings Drive,

Mountain View, CA 94043, http://www.disktrend.com.

[EMC, 1999] The Enterprise Storage Company, http://www.emc.com/.

[English and Stepanov, 1992] R. English and A. Stepanov, “Loge: a Self-Organizing Disk Control-

ler,” Proceedings of the 1992 Winter USENIX Technical Conference, pp. 237–251, January

1992.

[Feeley et al., 1995] M. Feeley, W. Morgan, F. Pighim, A. Karlin, H. Levy, and C. Thekkath, “Im-

plementing Global Memory Management in a Workstation Cluster,” Proceedings of the Fif-

teenth ACM Symposium on Operating Systems Principles, pp. 201-212, December 1995.

130

[Feiertag and Organick, 1971] R. Feiertag and E. Organick, “The Multics Input-Output System,”

Proceedings of the Third ACM Symposium on Operating Systems Principles, October 1971.

[Franklin et al., 1994] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dy-

namic Systems, 3rd ed., Addison-Wesley Publishing Company, 1994.

[Ganger and Kaashoek, 1997] G. Ganger and F. Kaashoek, “Embedded Inodes and Explicit Group-

ing: Exploiting Disk Bandwidth for Small Files,” Proceedings of the 1997 Annual USENIX

Technical Conference, pp. 1–17, January 1997.

[Ganger et al., 1998] G. Ganger, B. Worthington, and Y. Patt, “The DiskSim Simulation Environ-

ment Version 1.0 Reference Manual,” University of Michigan Technical Report CSE-TR-

358-98, February 1998.

[Ghormley et al., 1998] D. Ghormley, D. Petrou, S. Rodrigues, and T. Anderson, “SLIC: An Ex-

tensibility System for Commodity, Operating Systems,” Proceedings of the 1998 Annual US-

ENIX Technical Conference, June 1998.

[Gibson, 1992] G. Gibson, “Redundant Disk Arrays: Reliable, Parallel Secondary Storage,” ACM

Distinguished Dissertations, MIT Press, Cambridge Massachusettes.

[Geist et al., 1994] R. Geist, D. Suggs, and R. Reynolds, “Minimizing Mean Seek Distance in Mir-

rored Disk Systems by Cylinder Remapping”, Performance Evaluation, 20:97-114, 1994.

[Golding et al., 1995] R. Golding, P. Bosch, C. Staelin, T. Sullivan and J. Wilkes, “Idleness Is Not

Sloth,” Proceedings of the 1995 Winter USENIX Technical Conference, January 1995.

[Gray, 1981] J. Gray, “The Transaction Concept: Virtues and Limitations,” Proceedings of the Sev-

enth International Conference on Very Large Data Bases, pp. 144-154, September 1981.

[Gribble et al., 1998] S. Gribble, G. Manku, D. Roselli, E. Brewer, T. Gibson, and E. Miller, “Self-

Similarity in File Systems,” Proceedings of the 1998 ACM Sigmetrics Conference on Mea-

surement and Modeling of Computer Systems, 141–150, June 1998.

131

[Griffioen and Appleton, 1994] J. Griffioen and R. Appleton, “Reducing File System Latency using

a Predictive Approach,” Proceedings of the 1994 Summer USENIX Technical Conference,

pp. 197–207, June 1994.

[Grimsrud, 1998] K. Grimsrud, “Method And Apparatus For Improving Disk Drive Performance,”

United States Patent 5802593, September 1998.

[Grochowski, 1996] E. Grochowski, “IBM Leadership In Disk Drive Technology,” ht-

tp://www.storage.ibm.com/storage/technolo/grochows/grocho01.htm, 1996.

[Grochowski, 1998] E. Grochowski, “Magnetic Hard Disk Drives— Advances Through The Year

2000 And Beyond,” Public Seminar at University of California at Berkeley, October 29,

1998.

[Hagmann, 1987] R. Hagmann, “Reimplementing the Cedar File System Using Logging and Group

Commit,” Proceedings of the Eleventh ACM Symposium on Operating Systems Principles,

pp. 155–162, October 1987.

[Hartman and Ousterhout, 1995] J. Hartman and J. Ousterhout, “The Zebra Striped Network File

System,” ACM Transactions on Computer Systems, 13(3):279-310, August 1995.

[Harvest, 1998] The Harvest Object Cache. http://harvest.transarc.com/, 1998.

[Hendrickson and Leland, 1995] B. Hendrickson and R. Leland, “A Multilevel Algorithm for Par-

titioning Graphs,” Proceedings of SUPERCOMPUTING ‘95, 1995.

[Hennessy and Patterson, 1996] J. Hennessy and D. Patterson, Computer Architecture: A Quanti-

tative Approach, Second Edition, Morgan Kaufmann Publishers, Inc., 1996.

[Hitz et al., 1995] D. Hitz, J. Lau, and M. Malcolm, “File System Design for an NFS File Server

Appliance,” Network Appliance Technical Report TR3002, March 1995.

132

[Howard et al., 1988] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Side-

botham, and M. West, “Scale and Performance in a Distributed File System,” ACM Transac-

tions on Computer Systems, 6(1):51-81, February, 1988.

[Intel, 1998] Intel Corporation, Intel Application Launch Accelerator, http://developer.in-

tel.com/ial/ala/, 1998.

[Jacobson and Wilkes, 1991] D. Jacobson and J. Wilkes, “Disk Scheduling Algorithms Based On

Rotational Position,” Hewlett-Packard Technical Report, HPL-CSP-91-7rev1, March 1991.

[Jacobson and Karels, 1988] V. Jacobson and M. Karels, “Congestion Avoidance and Control,”

Proceedings of the SIGCOMM Conference on Data Communication, November 1988.

[Java, 1999] Sun Microsystems, “The Java HotSport[tm] Performance Engine Architecture,” ht-

tp://java.sun.com/products/hotspot/whitepaper.html, April 1999.

[Karedla et al., 1994] R. Karedla, J. S. Love, and B. Wherry, “Caching Strategies to Improve Disk

System Performance,” Computer Magazine, pp. 38–46, March 1994.

[Kotz et al., 1994] D. Kotz, S. Toh, and S. Radhakrishnan, “A Detailed Simulation Model of the HP

97560 Disk Drive,” Dartmouth Technical Report PCS-TR94-220, July 1994.

[Kowalski, 1978] T. Kowalski, “FSCK: The UNIX System Check Program,” Bell Laboratory,

March 1978.

[Kroeger and Long, 1994] T. Kroeger and D. Long, “Predicting File System Actions from Prior

Events,” Proceedings of the 1996 Annual USENIX Technical Conference, June 1996.

[Lee and Thekkath, 1996] E. Lee and C.Thekkath, “Petal: Distributed Virtual Disks,” Proceedings

of the 7th International Conference on Architectural Support for Programming Languages

and Operating Systems, pp. 84–92, October 1996.

133

[Lei and Duchamp, 1997] H. Lei and D. Duchamp, “An Analytical Approach to File Prefetching,”

Proceedings of the 1997 Annual USENIX Technical Conference, pp. 272–288, January 1997.

[Lomet, 1995] D. Lomet, “The Case for Log-structuring in Database Systems,” International Work-

shop on High Performance Transaction Systems, September 1995.

[Mackert and Lohman, 1986] L. Mackert and G. Lohman, “R* Optimizer Validation and Perfor-

mance Evaluation for Distributed Queries,” Proceedings of the Twelfth International Con-

ference on Very Large Data Bases, pp. 149-158, August 1986.

[Mashey, 1997] J. Mashey, “Big Data... and the Next Wave of InfraStress,” Technical presentation

given at University of California at Berkeley, 1997.

[Matthews et al., 1997] J. Matthews, D. Roselli, A. Costello, R. Wang, and T. Anderson, “Improv-

ing the Performance of Log-Structured File Systems with Adaptive Methods,” Proceedings

of the Sixteenth ACM Symposium on Operating Systems Principles, pp. 238–251, December

1997.

[Matthews, 1999] J. Matthews, “Reorganizing Disk Layout to Improve the Read Performance of

the TPC-D Benchmark on a Log-Structured File System,” http://www.cs.berke-

ley.edu/~neefe/papers/DBPROJ.ps, February 1999.

[McNutt, 1994] B. McNutt, “Background Data Movement in a Log-Structured File System,” IBM

Journal of Research and Development, 38(1):47-58, 1994.

[McKusick, 1999] M. McKusick, “Soft Updates: A Technique for Eliminating Most Synchronous

Writes in the Fast Filesystem,” FREENIX Track Proceedings of the 1999 Annual USENIX

Technical Conference, pp. 1–17, June 1999.

[McKusick et al., 1984] M. McKusick, W. Joy, S. Leffler, and R. Fabry, “A Fast File System for

UNIX,” ACM Transactions on Computer Systems, 2(3):181–197, August 1984.

134

[McVoy and Kleiman, 1991] L. McVoy and S. Kleiman, “Extent-like Performance from a UNIX

File System,” Proceedings of the 1991 Winter USENIX Technical Conference, pp. 33-43,

January 1991.

[Mohan et al., 1992] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, “ARIES: A

Transaction Recovery Method Supporting Fine-Granularity Locking and Partial Rollbacks

Using Write-Ahead Logging,” ACM Transactions of Database Systems, 17(1):94-162, 1992.

[Mummert and Satyanarayanan, 1994] L. Mummert and M. Satyanarayanan, “Long Term Distrib-

uted File Reference Tracing: Implementation and Experience,” Carnegie-Mellon Technical

Report CMU-CS-94-213, November 1994.

[Musser and Schimke, 1992] D. Musser and N. Schimke, “Block Shuffling for Improved Read Per-

formance in a Loge Disk Controller,” Rensselaer Polytechnic Institute Technical Report, Au-

gust 1992.

[Network Appliance, 1997a] Network Appliance, “NetCache Software Advantage,” ht-

tp://www.networkappliance.com/products/level3/netcache/webcache.html.

[Network Appliance, 1997b] Network Appliance, “Caching Tutorial for Web Authors and Web-

masters,” http://www.networkappliance.com/products/level3/netcache/cache_basics.html.

[Norton Utilities, 1999] Norton Utilities, http://www.symantec.com/nu/fs_nunt.html, 1999.

[Ousterhout et al., 1985] J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer, and J. Th-

ompson, “A Trace-Driven Analysis of the UNIX 4.2 BSD File System,” ACM Tenth Sympo-

sium on Operating Systems Principles, pp. 15–24, December 1985.

[Ousterhout, 1995a] J. Ousterhout, “A Critque of Seltzer’s 1993 USENIX Paper,” http://www.sun-

labs.com/people/john.ousterhout/seltzer93.html, 1995.

[Ousterhout, 1995b] J. Ousterhout, “A Critque of Seltzer’s LFS Measurements,” http://www.sun-

labs.com/people/john.ousterhout/seltzer.html, 1995.

135

[Ousterhout,1995c] J. Ousterhout, “A Response To Seltzer’s Response,” http://www.sun-

labs.com/people/john.ousterhout/seltzer2.html, 1995.

[Papadopolous, 1997] G. Papadopolous, “The Future of Computing,” Unpublished talk at Network

of Workstations workshop, Lake Tahoe, CA, July 27, 1997.

[Patterson, 1998] D. Patterson, “Hardware Technology Trends and Database Opportunities,” Key-

note Address at the 1998 ACM SIGMOD Conference, Slides available at http://www.cs.ber-

keley.edu/~pattrsn/talks.html, 1998.

[Patterson, 1995] R. H. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka, “Informed

Prefetching and Caching,” Proceedings of the 15th Symposium on Operating System Princi-

ples, pp. 79–95, December 1995.

[Quantum, 1999a] Quantum Corporation. “Firsts in Disk Drive Technology,” http://www.quan-

tum.com/src/tt/sh_firsts.htm, 1999.

[Quantum, 1999b] Quantum Corporation, “Storage Industry History and Trends,” ht-

tp://online1.quantum.com/src/tt/storage_history.htm, 1999.

[Riedel and Gibson, 1996] E. Riedel and G. Gibson, “Understanding Customer Dissatisfaction with

Underutilized Distributed File Servers,” Proceedings of the 5th NASA Goddard Space Flight

Center Conference on Mass Storage Systems and Technologies, September 1996.

[Ritchie and Thompson, 1974] D. Ritchie and K. Thompson, “The UNIX Time-Sharing System,”

Communications of the ACM, 17(7), July 1974.

[Roselli, 1998] D. Roselli, “Characteristics of File System Workloads,” University of California at

Berkeley Technical Report UCB//CSD-98-1029, December 1998.

[Roselli et al., 1999] D. Roselli, J.N. Matthews and T. Anderson, “Improving File System Disk

Read Performance,” submitted for publication, May 1999.

136

[Rosenblum and Ousterhout, 1992] M. Rosenblum and J. Ousterhout, “The Design and Implemen-

tation of a Log-Structured File System for UNIX,” ACM Transactions on Computer Systems,

10(1):26–52, February 1992.

[Rosenblum, 1992] M. Rosenblum, “The Design and Implementation of a Log-Structured File Sys-

tem,” University of California, Berkeley Technical Report, UCB-CSD-92-696, June 1992.

[Ruemmler and Wilkes, 1991] C. Ruemmler and J. Wilkes, “Disk Shuffling,” Hewlett-Packard

Technical Report HPL-91-156, October 1991.

[Ruemmler and Wilkes, 1993] C. Ruemmler and J. Wilkes, “UNIX Disk Access Patterns,” Pro-

ceedings of 1993 Winter USENIX Technical Conference, CA, January 1993.

[Russinovich and Cogswell, 1997] M. Russinovich and B. Cogswell, “Examining the Windows NT

File System,” Dr. Dobb’s Journal, February 1997.

[Schwaderer and Wilson, 1996] W. D. Schwaderer and A. Wilson, Understanding I/O Subsystems,

Adaptec Press, Milpitas, CA, 1996.

[Seagate, 1998] Seagate Technology, Inc., “Specifications for ST-118202,” ht-

tp://www.seagate.com.

[Selinger et al., 1979] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price, “Access

Path Selection in a Relational Database Management System,” Proceedings of the 1979 ACM

SIGMOD Conference, pp. 23-34, 1979.

[Seltzer et al., 1990] M. Seltzer, P. Chen, and J. Ousterhout, “Disk Scheduling Revisted”, Proceed-

ings of the 1990 Winter USENIX Technical Conference, January 1990.

[Seltzer et al., 1993] M. Seltzer, K. Bostic, M. McKusick and C. Staelin, “An Implementation of a

Log-Structured File System for UNIX,” Proceedings of the 1993 Winter USENIX Technical

Conference, January 1993.

137

[Seltzer et al., 1995] M. Seltzer, K. Smith, H. Balakrishnan, J. Chang, S. McMains, and V. Pad-

manabhan, “File System Logging Versus Clustering: A Performance Comparison,” Proceed-

ings of the 1995 Winter USENIX Technical Conference, January 1995.

[Seltzer and Smith, 1995] M. Seltzer and K. Smith, “A Response to Ousterhout’s Critique of LFS

Measurements,” http://www.das.harvard.edu/users/faculty/Margo_Seltzer/usenix.195/oust-

er.html, 1995.

[Smith and Seltzer, 1994] K. Smith and M. Seltzer, “File Layout and File System Performance,”

Harvard Technical Report TR-35-94, 1994.

[Smith and Seltzer, 1996] K. Smith and M. Seltzer, “A Comparison of FFS Disk Allocation Poli-

cies,” Proceedings of the 1996 Annual USENIX Technical Conference, January 1996.

[Smith and Seltzer, 1997] K. Smith and M. Seltzer, “File System Aging— Increasing the Relevance

of File System Benchmarks,” Proceedings of the 1997 ACM Conference on Measurement

and Modeling of Computer Systems, pp. 203–213, June 1997.

[Smith, 1999] K. Smith, Personal Communication, April 1999.

[Staelin, 1991] C. Staelin, “High Performance File System Design,” Princeton University Disserta-

tion, Technical Report TR-347-91, October 1991.

[SPEC, 1992] Standard Performance Evaluation Corporation, “The SPEC CPU92 Benchmarks,”

http://www/spec.org/osg/cpu92.

[SPEC, 1995] Standard Performance Evaluation Corporation, “The SPEC CPU95 Benchmarks,”

http://www/spec.org/osg/cpu95.

[Squid, 1998] The Squid Internet Object Cache, http://squid.nlanr.net/Squid/, 1998.

138

[Sweeney et al., 1996] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck,

“Scalability in the XFS File System,” Proceedings of the 1996 Annual USENIX Technical

Conference, January, 1996.

[Thekkath et al., 1997] C. Thekkath, T. Man, and E. Lee, “Frangipani: A Scalable Distributed File

System,” Proceedings of the 16th Symposium on Operating Systems Principles, pp. 224–237,

December 1997.

[Talagala et al., 1999] N. Talagala, R. Arpaci-Dusseau and D. Patterson, “Microbenchmark-Based

Extraction of Local and Global Disk Drive Parameters”, Computer Science Division, Uni-

versity of California, Berkeley, Submitted for publication, July 1999.

[Thompson, 1978] K. Thompson, “UNIX Implementation,” Bell Systems Technical Journal, 57, 6,

part 2, August 1978.

[TPC-B, 1990] Transaction Processing Performance Council, “TPC Benchmark B Standard Spec-

ification,” August 1990.

[TPC-C, 1990] Transaction Processing Performance Council, “TPC Benchmark C Standard Spec-

ification,” July 1990.

[TPC-D, 1995] Transaction Processing Performance Council, “TPC Benchmark D Standard Spec-

ification,” April 1995.

[Tsangaris and Naughton, 1991] M. Tsangaris and J. Naughton, “A Stochastic Approach for Clus-

tering in Object Bases,” Proceedings of the 1991 ACM SIGMOD Conference, pp. 12-21, May

1991.

[Tsangaris and Naughton, 1992] M. Tsangaris and J. Naughton, “On the Performance of Object

Clustering Techniques,” Proceedings of the 1992 ACM SIGMOD Conference, pp. 144-153,

1992.

139

[Veritas, 1995] Veritas Software, “The VERITAS File System (VxFS),” http://www.veri-

tas.com/products.html, 1995.

[Villasenor and Mangione-Smith, 1997] J. Villasenor and W. Mangione-Smith. “Configurable

Computing”, Scientific American, June 1997.

[Vongsathorn and Carson, 1990] P. Vongsathorn and S. Carson, “A System for Adaptive Disk Re-

arrangement,” Software: Practice and Experience, vol. 20, no. 3, pp. 225–242, March 1990.

[Wang et al., 1999] R. Wang, T. Anderson, and D. Patterson, “Virtual Log Based File Systems for

a Programmable Disk, “Proceedings of the Third Symposium on Operating Systems Design

and Implementation, pp. 29–43, February 1999.

[Wilkes et al., 1995] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan, “The HP AutoRAID Hier-

archical Storage System,” Proceedings of the Fifteenth ACM Symposium on Operating Sys-

tems Principles, pp. 96–108, December 1995.

[Wittle and Keith, 1993] M. Wittle and B. Keith, “LADDIS: The Next Generation in NFS File

Server Benchmarking,” Proceedings of the 1993 Summer USENIX Technical Conferene, pp.

111–128, June 1993.

[Worthington et al., 1995] B. Worthington, G. Ganger, Y. Patt, and J. Wilkes. “On-line Extraction

of SCSI Disk Drive Parameters”, Proceedings of the 1995 ACM Sigmetrics Conference on

Measurement and Modeling of Computer Systems, May 1995.

[Wong, 1983] C. Wong, “Algorithmic Studies in Mass Storage Systems,” Computer Science Press,

1983.

