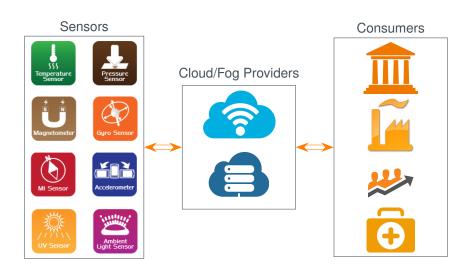
IEEE GLOBECOM 2016

Sociability-Driven User Recruitment in Mobile Crowdsensing Internet of Things Platforms

Claudio Fiandrino	Imdea Networks Institute	i W dea networks
Burak Kantarci	University of Ottawa	uOttawa L'Université canadienne Canada's university
Fazel Anjomshoa Jeanna Matthews	Clarkson University	Clarkson UNIVERSITY defy convention.
Dzmitry Kliazovich Pascal Bouvry	University of Luxembourg	UNIVERSITÉ DU LUXEMBOURG

Smart Cities: Introduction

- 50% of worldwide population lives in cities
- Cities account for
 - ▶ 80% of worldwide gas consumption
 - ▶ 75% of global energy consumption
 - 60% of residential water use



N. B. Grimm, S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai, and J. M. Briggs, "Global change and the ecology of cities," in Science, vol. 319, no. 5864, 2008, pp. 756–760.

Sensing as a Service (S²aaS) for IoT

Mobile Crowdsensing

- Appealing paradigm for sensing and collecting data
 - ► Monitoring phenomena in smart cities
- ► Sensing as a Service (S²aaS) business model
- ► Sensors commonly available in mobile and IoT devices

Mobile Crowdsensing

- Appealing paradigm for sensing and collecting data
 - Monitoring phenomena in smart cities
- ► Sensing as a Service (S²aaS) business model
- ► Sensors commonly available in mobile and IoT devices

Figure: Diffusion of mobile devices

Mobile Crowdsensing

- Appealing paradigm for sensing and collecting data
 - Monitoring phenomena in smart cities
- ► Sensing as a Service (S²aaS) business model
- ▶ Sensors commonly available in mobile and IoT devices

Figure: Diffusion of mobile devices

Sensing Paradigms

► Two sensing paradigms

Participatory

- Active user engagement
- Sensing and reporting user-driven
- Centralized, direct task assignment

Opportunistic

- Minimal user involvement
- Sensing and reporting application- or device-driven
- Distributed, no direct task assignment

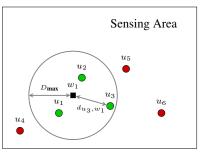
User Recruitment in Mobile CrowdSensing

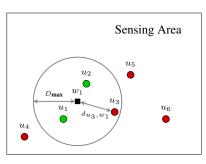
The recruitment problem

- Select users able to fulfill the task with high accuracy
- ► Minimize costs of the organizer/users
- Recruit a minimum number of users N
- ► Factors define user eligibility
 - ► Distance from sensing task
 - Sociability
- Task acceptance driven by sociability

Recruitment Modes

Select users with highest recruitment factor r_i:


$$r_i = \alpha \cdot \frac{1}{d_{u_i,w_j}} + (1 - \alpha) \cdot s_i;$$


- ► d_{u_i,w_i} : distance location user u_i and task w_i
- ▶ s_i: sociability
- ▶ Two modes

 - $\alpha = 1$ Distance-Based Recruitment Mode (DBRM)

Example

■ w_i : Sensing task i; • u_j : User j assigned to task i • u_k : User k not assigned to any task.

(a) SDRM

(b) DBRM

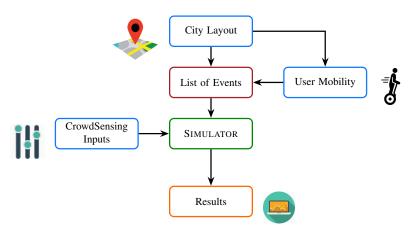
Sociability Factor: $s_1=0.8; \quad s_2=0.9; \quad s_3=0.7; \quad s_4=0.25; \quad s_5=0.1 \quad s_6=0.5.$

CrowdSenSim

- Custom simulator for crowdsensing activities
 - Access and download: http://crowdsensim.gforge.uni.lu
 - ► Contact: crowdsensim@gmail.com

CrowdSenSim Mobile Crowdsensing Simulator

About the Simulator


CrowdSenSim is a discrete-event simulator designed for research use in Mobile Crowd Sensing. It allows simulation of large-scale crowd sensing activities in urban scenarios and can be used to develop novel solutions in data collection, task assignment, monitoring and resource management. It is released under the GNU General Public License version 3.

© 2015-2016 - CrowdSenSim • University of Luxembourg

CrowdSenSim: Features and Architecture

- ▶ Large scale (time-space)
- Realistic urban environments

Evaluation Settings

► Luxembourg City center

▶ Users: 1000-10000

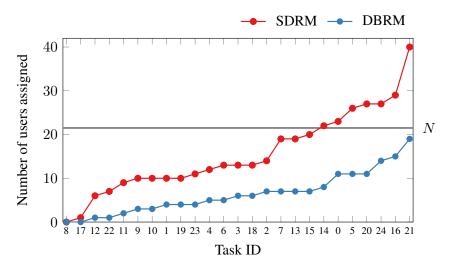
Walking speed: *U* [1 − 1.5] m/s

▶ Walking period: *U* [10 – 30] min

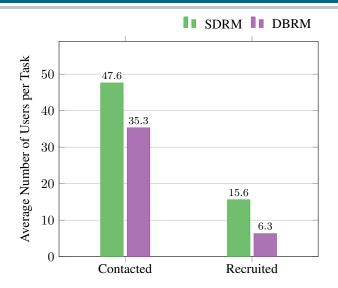
Simulation period: 8 AM - 2 PM

Set of 25 tasks

► Task duration: {20; 25; 30; 35; 40;


45; 50} timeslots

► *D*_{max}: 30m



Number of Assigned Users per Task

► SDRM always outperforms DBRM in assigning users to the tasks

Average Number of Contacted vs. Recruited Users

► SDRM: higher cost (12%) higher outcome (9%)

Conclusion

Summary

- Sociability-based recruitment policy
- ▶ Performance evaluation in large scale realistic urban environments

Take home message

- Sociability essential to improve recruitment
- CrowdSenSim: simulator for Mobile Crowdsensing
 - Access and download: http://crowdsensim.gforge.uni.lu
 - ► Contact: crowdsensim@gmail.com

Claudio Fiandrino

<claudio.fiandrino@imdea.org>
<claudio.fiandrino@gmail.com>

<claudio.fiandrino@uni.lu>