
Improving the Performance of Log-Structured File Systems with Adaptive Methods

Jebma Neefe Matthews, Drew Rose& Adam M. Costello,
Randolph Y. Wang and Thomas E. Anderson

Computer Science D&ion, University of California, Berkeley

Abstract,

File system designers today face a dilemma. A log-structured
file system (LFS) can offer superior performance for many com-
mon workloads such as those with frequent small writes, read traf-
fic that is predominantly absorbed by the cache, and sufficient idle
time to clean the log. However, an LFS has poor performance for
other workloads, such as random updates to a full disk with little
idle time to clean. In this paper, we show how adaptive algorithms
can be used to enable LFS to provide high performance across a
wider range of workloads. First, we show how to improve LFS
write performance in three ways: by choosing the segment ‘size to
match disk and workload characteristics, by modifying the LFS
cleaning policy to adapt to changes in disk utilization, and by using
cached data to lower cleaning costs. Second, we show how to im-
prove LFS read performance by reorganizing data to match read
patterns. Using trace-driven simulations on a combination of syn-
thetic and measured workloads, we demonstrate that these exten-
sions to LFS can significantly improve its performance.

1 Introduction

File system designs have long been driven by changes in the
cost and performance of the underlying hardware. A designer must
consider the relative cost per byte of memory versus disk
[Rose92a], the relative performance of the CPU versus a network
access versus a disk access [Dahl94], the relative magnitudes of
seek time, rotational delay, and disk bandwidth [Selt90], not to
mention changes in the workload placed on the file system.

As a concrete example, the management of free blocks on disk
has evolved over the past two decades to reflect hardware technol-
ogy changes. Early file systems, such as the original UNIX file sys-
tem [Ritc74], used a simple on-disk linked list to track free blocks..
Later, systems such as the BSD Fast File System (FFS) lJvIcKu843,
replaced the on-disk linked list with an incore bitmap, allowing the
file system to optimize block allocation to keep related data, such
as blocks within a tile, as adjacent as possible on disk. By this point,
CPU cycles had become cheap enough relative to disk access costs
to make the overhead of searching the bitmap small compared with

This work is supported in art by the Defense Advanced Research Projects Agency
@WO600-93-C-2481. F30&2-95-C-0014), the National Science Foundation (CDA
0401156), California MICRO, the AT&T Foundation, Digital Equipment Corporation,
Exabyte, Hewlett-Packard, Microsoft, Siemens, IBM, Sun Microsystems, and
Xerox Co
Gmduate F

oration. Matthews was also supported b a National Science Foundation
ellowship, Roselli by a Department of Edcation GAANN fellowship,

Costello by a CaliforniaMICRO Fellowship, and Anderson by aNational Science
Foundation Presidential Faculty Fellowship. The authors can be contacted at:
(ncefe, drew, amc, rywang. tea)Bcs.berkeley.edu.

Permission to make digital/hard copy of part or all this work for
personai or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM.
Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
SOSP-16 IO/97 Saint-Malo, France
0 1997 ACM 0-89791-916-5/97/0010...$3.50

the potential improvement in disk read performance from better
block allocation policies. More recently, the increasing capacity of
disks combined with the increasing use of RAIDS has driven some
to abandon bit maps for B-trees to reduce the CPU ovcrhcad of
searching for a free disk block [Swee96]; a 100 disk system today
could require over 10 MB of bitmap.

These changes pose a tremendous challenge to file system dc-
signers. Although it may be possible to design a system that is effi-
cient for today’s hardware and workload patterns, file system
implementations are often used for decades, long after their design
assumptions are no longer valid. For example, the BSD Fast File
System is still in widespread use fifteen years after it was designed.
In that time, disk capacities and bandwidths have increased by over
two orders of magnitude, while disk access times have improved at
a much slower rate. In addition, workloads can change dramatically
over periods much shorter than file system lifetimes.

In this paper, we propose and investigate a design principle for
file systems, called self-tuning. A self-tuning system (1) measures
the physical characteristics of the underlying hardware, (2) mea-
sures the workload placed on the file system, and (3) adapts the tile
system behavior to match. Building a self-tuning system requires
new algorithms that monitor the environment and adjust behavior
appropriately. The alternative to self-tuning is building a file sys-
tem for a fixed point on the moving target of hardware and work-
load characteristics, and either living with the resulting system well
past its applicability or rebuilding the system from scratch every
few years. A plethora of knobs could be added, but they are as like-
ly to be mistuned as well-tuned.

Weexplore self-tuning by means of a set of four enhancements
to the design of a log-structured tile system (LFS) [Rose92a]. LFS
research has been a good case study of the need for adaptive mcth-
ods because it has shown the difficulty of designing a file system to
have good performance across a wide spectrum of workloads, even
for a fixed technology point.

In LFS, disk storage is organized into a segmented, append-
only log; disk writes are batched together to the end of the log. Pe-
riodically, a garbage collection process called the cleaner locates
dead space in the log and coalesces it into large free extents that are
then available for new log writes.This architecture enables an LFS
to offer superior performance for workloads with frequent small
writes, read traffic that is predominantly absorbed by the cache, and
sufficient idle time to clean the log. However, it has dramatically
lower performance for some other workloads, such as those domi*
nated by random updates to a full disk with little idle time to clean
[Selt93, SeltgSa].

This dichotomy in LFS performance has led to a debate among
LFS researchers [Selt93, Oust95a, Selt95a, Oust95b, Sclt95b,
Oust95c], and has led many to conclude that LFS is an interesting,
but impractical, idea. We would like to refocus the discussion away
from comparing LFS and FFS, to how to design a single file system
with good performance across a wide range of workloads and hard-
ware characteristics.

We make four contributions to improving the performance of
log-structured tile systems. We evaluate our improvements to LFS
using trace-driven simulations of both synthetic and measured
workloads.

238

Three of our optimizations concern improving LFS write per-
formance. First, we show how to choose the LFS segment size by
trading transfer efficiency against cleaning efficiency. Second, we
show how to combine traditional LFS cleaning with an alternate
garbage collection mechanism called hole-plugging [wilk96]. Our
approach adapts to changes in disk utilization and workload to
avoid the traditional LFS performance cliff at high disk utilizations
for random updates, while still preserving the advantage LFS has at
lower disk utilizations. Third, we consider how to reduce cleaning
costs by taking advantage of cached data when cleaning. All told,
these three optimizations can improve LFS write performance by .
up to a factor of four at high disk utilizations.

Our final optimization concerns improving LFS performance
for reads that miss in the cache. The original LFS work was moti-
vated by the prediction that future systems would have increasingly
large memory caches relative to disk capacity, so that fewer reads
would reach disk. As a result, write cost would dominate file sys-
tem performance. This was a reasonable prediction when LFS was
first introduced. At that time, the cost per byte of DRAM had been
decreasing relative to that of disk; since then, however, this trend
has reversed, Interestingly, LFS is easily adapted to improve read
performance; the LFS cleaner already has a mechanism for atomi-
cally moving data around on disk and for creating large regions of
contiguous space that can be used for coalescing related data to-
gether. We demonstrate that a dynamic disk reorganizer can be
used to improve disk read performance by nearly a factor of two for
a workload in which read patterns do not match write patterns.

Many other systems have applied self-tuning principles at some
level; our work was initially inspired by these efforts. For example,
TCP implementations have long measured round-trip delays to de-
termine appropriate time-out values [JacoSS]. More recently these
implementations have begun to adapt to patterns in how packets are
dropped by the network under congestion @Iath96]. In the file sys-
tem arena, AutoRAID lWilk96] adapts the amount of disk space
devoted to mirroring vs. RAID-5 based on the percentage of free
space available; AutoRAID also moves data between the mirrored
region and the RAID-5 based on the pattern of writes to the data.

Our four enhancements to LFS are by no means an exhaustive
list of possible applications of self-tuning to LFS. Additional op-
portunities include, to name just a few: altering the policy by which
segments are chosen for cleaning based on whether updates occur
randomly or exhibit locality; adapting the write buffer organization
to segregate related data, depending on the available memory, level
of multiprogramming, and sync frequency; adaptively clustering
blocks during cleaning to maximize locality of future updates. Self-
tuning provides a conceptual framework for developing robust so-
lutions to these issues.

The rest of the paper describes our work in more detail. Section
2 provides background on a variety of file system paradigms. Sec-
tion 3 describes our evaluation methodology, including a descrip-
tion of our simulator and the traces we used. Sections 4 and 5
outline how LFS can be changed to improve write and read perfor-
mance, respectively. Section 6 describes related work. We summa-

’ rize our conclusions in section 7.

2 Background

Much debate concerning the best paradigm for building file
systems has arisen because each of the major approaches has envi-
ronments for which it is well suited. Our goal in this paper is not to
compare LFS directly with other file systems because such compar-
isons are highly dependent on workload and implementation de-
tails. Rather, our goal is to understand the strengths and weaknesses
of each system and to use that information to design adaptive algo-
rithms that allow LFS to retain its strengths as well as incorporate

the strengths of other systems.
The traditional approach to building file systems has been to

place most of the burden of minimizing seeks and rotational delays
on the disk block allocation policy. For example, FFS ~cKu84]
places new data and metadata blocks on disk near other semantical-
ly related blocks (e.g., blocks within the same file or within the
same directory). In update-in-place file systems such as FFS, once
a block has been placed in a given disk location it does not move-
all subsequent references to the block, both reads and updates, will
be sent to that location. Particularly when dynamic access patterns
follow semantic relationships (e.g., when large files are read or
written in large chunks), this can offer good performance
mcVo91, Se&X, Smit96J. However, performance can decrease
over time as the disk becomes fragmented, particularly as the disk
fills up, making it harder for the allocation policy to find appropri-
ate slots for new blocks [Smit97]. Worse, this performance penalty
persists; without a disk reorganizer, once the disk fills up, perfor-
mance can be negatively impacted from then on.

An update-in-place approach also has significant performance
costs associated with crash recovery, both during recovery itself
and during normal operation. A logically atomic update to the file
system may require several physical disk writes; for example, cre-
ating a new tile requires disk writes to the directory containing the
file, the inode describing where to find the file’s data blocks, the
free block list, etc. In FFS, this is accomplished by applying each
update synchronously to disk in a consistent order, so that the crash
recovery procedure can detect logical operations that were in
progress at the time of the crash [Kowa78]. These synchronous up-
dates can severely limit the effective disk bandwidth (although the
ordering constraints can be loosened in some circumstances
[Gang94]). Perhaps more importantly, crash recovery requires
scanning the entire disk; for example, it can take over 10 minutes to
recover a modem 9 GB FFS disk after a crash.

Write-ahead logging file systems were designed to simplify
crash recovery [Hagm87, Chut92, Birr93, Cust94, Veri95,
Swee96]. Write-ahead logging batches metadata updates into a log.
After the log is safely on disk, the updates are copied into fued disk
locations, placed as in an update-in-place system. After most fail-
ures, only the log, rather than the entire disk, must be examined in
order to recover. The log always represents a consistent set of
changes to the file system. In addition to more efficient recovery,
write-ahead logging can sometimes offer better write performance
than simple update-in-place by batching many small writes togeth-
er into one larger log write and by reordering the second in-place
writes to minimize seek and rotational delay. Because the final disk
location of the data is the same, in the absence of contention be-
tween reads and writes, read performance is identical whether up-
datein-place or write-ahead logging is used.

Log-structured file systems extend the write-ahead logging ap-
proach by treating the log itself as the only storage location
[Rose92]. Both data and metadata are written to the log in large
contiguous regions, called segments. LFS also provides periodic
checkpoints which allow recovery to proceed efficiently from the
most recent checkpoint to the tail of the log.

Logically, LFS treats the disk as an infinite append-only log. In
practice, however, when LFS fills the disk with new log writes, it
must generate new free space. Fortunately, not everything in the log
is a part of the most recent version of the file system. When updated
data is written to the end of the log, the previous copy of the data is
still on disk in its old location and can be considered dead space or
a hole in the log. (In other systems, the update would have been
placed on top of the previous copy.) A garbage collecting process
called the cleaner must coalesce these holes into empty segments
which are then available for new log writes.

For many workloads, there is sufficient idle time in which the
LFS cleaner can run without interfering with normal file system ac-

239

cesses [Blac95]. However, when the disk tills up, disk updates are
scattered randomly across the disk, or long-term sustained disk per-
formance is required (leaving little idle time to clean), then LFS
cleaning can significantly degrade file system performance [Selt93,
Selt95]. Update-in-place file systems handle these situations more
gracefully because they simply pay the initial cost to place each
write on top of its previous location.

Although most LFS performance evaluations have focused on
write cost, read cost is also an important metric. The LFS data lay-
out policy is simply to place blocks on disk in the order in which
they are written. If reads are predominantly satisfied by the cache
or if disk block reads occur in the same order in which they were
written, then this simple data layout will be sufficient. However,
when these conditions are not met, read cost can increase as addi-
tional seeks and rotations are required between subsequently re-
quested blocks. Update-in-place systems group semantically
related data together regardless of the write order and therefore can
provide better read performance when semantic information cor-
rectly predicts dynamic read patterns. However, read patterns
might also follow the temporal locality reflected in LFS, but not the
semantic locality reflected in update-in-place systems.

In the rest of the paper, we discuss how to improve LFS perfor-
mance, in part by modifying its algorithms to take advantage of the
insights provided by the other systems.

3 Methodology

We evaluate our modifications to LFS using trace-driven sim-
ulations on both synthetic and measured workloads. In this section,
we describe the simulator and the traces that we used.

3.1 The Simulator
Our LFS simulator is approximately 15,000 lines of C++ code.

It allows a multitude of parameters to be varied including segment
size, disk size, disk performance characteristics, and cache size. We
use a segment size is 256 kB unless otherwise specified.

Our baseline disk model characterizes performance using sim-
ple seek, rotation, and bandwidth attributes. Throughout the paper,
we use access tinre to refer to average seek time plus a half rotation.
A disk request is modelled as taking the access time plus the request
size over the disk bandwidth. Unless otherwise specified, we simu-
late a 15 ms access time and 5 MB/s bandwidth, typical of a mid-
range disk [Sea97a]. Although simple, this model reflects the fact
that most LFS implementations make no effort to opportunistically
choose which segments to write or clean based on the current disk
head location.

However, a more sophisticated disk model is required to study’
read performance. To evaluate reorganizing data for reads, we
hooked our simulator to the HE97560 disk simulator from Dart-
mouth [Kotz94]. Our simulator can be configured to run with or’
without data reorganization.

Separate client and server caches can be simulated. Unless
specified, the client caches are 16 MB and the server cache is 128
MB. Data is channeled into the log through one write buffer. The
write buffer is flushed every 30 seconds of simulated time to cap-
ture the impact of partial segment writes; these occur in LFS when
data must be committed to disk (e.g., at the end of a transaction) be
fore an entire segment’s worth of data has accumulated.

The cleaner runs when there are no more empty segments avail-
able for new data. The amount of data that the cleaner may process
at one time can be varied. For the experiments presented in this pa-
per, we allowed the cleaner to process up to 20 MB at a time. Sev-
eral garbage collection methods can be chosen, including
traditiorzal LFS cleaning, hole-plugging pNilk96] and an adaptive
combination of cleaning and hole-plugging. (Each of these methods

will be discussed in more detail in Section 4.2.) A variety of poll.
ties for choosing segments to garbage collect are also implement-
ed, including greedy, which simply chooses the least utilized
segment at each opportunity, and cost-benefit [Rosc92a]. The cost-
bent? policy chooses the segment which minimizes the formuln

ax (1 -u)
, where u is the utilization of the segment nnd a is the

age of the segment. Throughout the rest of the pnper, we refer to
this policy as cost-age to avoid confusion with other cost-benclit
formulas presented in section 4.2.2.

Our simulator is descended from Mendel Rosenblum’s LFS
simulator [Rose92b]. Mike Dahlin modified this simulntor to nc-
cept input from a trace file and to track cache information [Dnhl95]
and used it to evaluate cooperative caching in xFS [Dnh194], WC
have added a writebuffer andimplemented the modiflcntions being
evaluated here. The benefit of this history is that the simulator has
already been used in several significant LFS evaluations. As a rc-
sult, there is a considerable amount of previous data with which WC

can compare our results.

3.2 The Traces
The simulator is driven by traces of tile system activity, Ench

trace record represents one of the following operations: read, write,
delete, truncate, sync, or attribute access. Files are specilled with a
unique identifier. Each record specifies which client generated the
request and when the request was issued.

We use both measured traces of real systems and synthetically
generated traces. We use the synthetic traces to stress the system
with a specific (usually worst-case) environment. This is necessary
in order to demonstrate that our self-tuning algorithms achieve ro-
bust performance across a wide range of workloads. We use the renl
traces to verify that we are helping, or at least not harming, nverngo
case performance.

For a measured trace, we use the Berkeley Auspex Trace
[Dahl94]. This trace follows the NFS activity of 236 clients ser-
viced by an Auspex file server over the period of 1 week during Into
1993. It was gathered by snooping Ethernet packets on four sub-
nets. The clients are the desktop workstations of the University of
California at Berkeley Computer Science Division. There nrc np-
proximately 4 million reads and 1 million writes, each to 8 kB
blocks, in the trace. In addition, there are approximately 40,000 file
deletes. There are no syncs recorded in the trace, so all partial scg
ments are due to the flush of the write buffer every 30 seconds, Be-
cause these traces are of NFS activity, we do not see any of the
accesses that hit in the local cache. Accordingly, the size of the cll-
ent caches is set to zero in the simulations. The trace does not con-
tain a checkpoint of the initial state of the tile system, so to initinlizc
the disk, we examine the trace and infer as much as we can nbout
what existed at the beginning. The trace lacks pathname informn-
tion which limited our ability to evaluate semantic reorganization.

A worst-case workload for LFS is one with random updates, no
idle time, and high disk utilization. The TFC-B dntnbnsc bench-
mark is an example of such a workload and was examined in
[Selt93, Selt951. We approximate this workload with n syntheticnl-
ly generated random update workload that has similar worst-case
characteristics for LFS. To initialize the disk, we first write enough
blocks sequentially to fill the disk to the desired utilization. Wo
then make ten times as many random updates as blocks initially
written with a sync call after every fourth. All writes issue from n
single client.

For many of the experiments in this paper, the results are scnsi-
tive to the amount of free space available on the disk. Traditionally,
this is specified as disk utilization. However, the nmount of free
space relative to the amount of actively written data matters also.
For example, a disk at 90% utilization will behave very differently
if only 20% is being actively written than if all of the data is being

240

acttvety wntten. ror tne ranaom upaate worktoaa, au or me aata on
disk is actively written. For the Auspex trace, we initialize the disk
by inferring as much as we can about the initial state of the file sys-
tem. After initialization, over 60% of the data on disk is not rewrit-
ten; it is a common characteristic of real systems that only a small
portion of the disk is actively written [Ruem93]. In this paper, we
specify the disk utilization, but note that a given disk utilization
corresponds to a higher ratio of free space to active data for the
Auspex trace than for the random update workload.

4 Improving Write Performance

LFS was designed to provide high performance for writes
through large batched disk transfers. However, additional research
demonstrated that cleaning overhead can result in dramatically
lower write performance for some workloads [Selt93, Selt95al. In
this section, we show how self-tuning principles can be applied to
LFS to provide high write performance across a broader range of
workloads, even those that were previously problematic.

In our evaluation, we examine the effect of our optimizations
on write cost, Write cost is the metric traditionally used in evaluat-
ing LFS write performance [Rose92b]. The original write cost
model can be expressed with the following formula:

WriteCost (EQ 1)

SegmentsTransferredT,,,t

= SegntentsTransferredN,,,D,,

SegsWrittenN,,,D,,, + SegsReadctean + SessWr~ttenctean
=

The write cost is the ratio of total work to the work necessary to
initially write the new data to disk. The total number of segments
transferred includes both the initial writes of new data
(SegsWrirtertN,,y) and cleaner reads and writes (SegsReadcr,,,
+ SegsWrittenCt&. The cleaner reads an entire segment even if
only a few live blocks remain. It may be beneficial to allow the
cleaner to read only the live blocks when that would take less time
[RosegZb], but following the original LFS, we did not include this
optimization. Ideally, the data would be written once and never
moved by the cleaner; this happens if all data in the segment is
overwritten before the segment is reclaimed. In the best case, then,
SegsReadCtea,, + SegsWrittencteO,, is 0 and the write cost is 1.

4.1 Understanding Write Cost: The Effect of
Segment Size

In this section, we discuss why segment size plays a larger role
in the write performance of LFS than has been previously suggest-
ed, In [Rose92a, Rosegab], segment size is chosen to be large
enough that the access time becomes insignificant when amortized
over the segment transfer. In Sprite LFS, a relatively large 1 MB
segment is used.

On the other hand, there is a countervailing benefit to choosing
a smaller segment size. [Rose92b] observes that at smaller segment
sizes the variance in segment utilizations is larger; allowing the
cleaner to choose less utilized segments. In particular, smaller seg-
ments are more likely to empty completely before cleaning. Empty
segments can simply be declared clean without requiring any disk
transfers by the cleaner. In the limit, with one-block segments,
cleaning costs would always be zero because all segments would be
either full or empty and no data would need to be compacted. Of
course, single block segments would eliminate any advantage from
batched transfers.

tn mts secuon, we aescrme a way to quanuty mis traae-err oe-
tween amortizing disk access times across larger transfer units and
reducing cleaner overhead.

Figure 1 shows the results of varying the segment size for the
Berkeley Auspex trace. According to the original definition of
write cost in EQ 1, write cost is minimized at small segments be-
cause smaller segments reduce cleaner overhead. However, this
does not reflect the inefficiency introduced by transferring smaller
segments.

In EQ 2, we introduce a quantity to reflect this inefficiency. We
define transfer ineficiency to be the ratio between the actual seg-
ment transfer time and the time it would have taken to transfer the
segment at full disk bandwidth. Figure 1 plots this computed value
across a range of segment sizes for a typical disk with a 15 ms ac-
cess time and 5 MB/s bandwidth. As segments become large, the
access time becomes insignificant relative to the time for transfer-
ring the segment, and therefore the transfer inefficiency approaches
one.

(EQ 2)

SegTransferTimeA,,,,t

= SegTransferTimeld,,t

AccessTime +
SegmentSize

DiskBandwidth =
SegmentSize

DiskBandwith

= AccessTime x D~g~~n~~~~~h + 1

The write cost in EQ 1 measures the overhead of cleaning. The
transfer inefficiency in EQ 2 measures the bandwidth degradation
caused by seek and rotational delay. In EQ 3, we introduce a new
quantity, overall write cost, that captures both of these effects. The
overall write cost is the total time required to write new data and
clean segments, divided by the time to write just the new data at full
disk bandwidth. If all disk transfers are in units of full segments,
then this is simply the product of the original write cost in EQ 1
times the transfer inefficiency in EQ 2.

OverallWriteCost

(EQ 3)

when all transfers are done in units of segments

SegmentsTransferredT,,,I x SegTransferTimeA,tuat

= SegmentsWrittenN,,VD., x SegTransferTimeld,,t

= WriteCost x TransferZnefficiencysegs (EQ 4)

Figure 1 shows that this quantity does allow us to see the impact
of the competing effects we have discussed. It is minimized at an
intermediate segment size. Note that when the transfer inefficiency
is 1, the overall write cost is equal to the original write cost. This is
consistent with the assumption made in [Rose92b] that the segment
size is large enough that access time becomes insignificant. In Fig-
ure 1, the difference between EQ 3 and EQ 4 is due to the impact of
partial segments.

241

1
8k 16k 32k 64k 128k256k512k IM 2M 4M 8M

segment size (bytes)

FIGURE! 1. Varying segment size for the Auspex
workload. Disk utilization is 85%; access time is
15 ms and bandwidth is 5 MB/s. Small segments
are inefficient due to seek and rotational delay;
large segments are inefficient due to fewer
opportunities to find nearly empty segments.
Overall write cost includes the impact of partial
segments; write cost times TI does not. Write cost
and overall write cost are simulated quantities.
Transfer inefficiency is computed.

Changes in disk characteristics affect the trade-off between
cleaner overhead and transfer inefficiency. Figure 2 shows that the
optimal segment size for the Auspex workload is approximately
four times the product of disk access time and bandwidth (i.e., four
times the amount of data that could be transferred during the time
necessary to position the disk head). Figure 2 shows the overall
write cost curves for the disks used in Sprite LFS (17.5 ms access
time and 1.3 MB/s bandwidth) and.for more modem disks (15 ms,
5 MB/s and 10 ms, 15 MB/s). This graph shows that for the Auspex
workload a segment size of 64-128 kB would have been better than
the 1 MB segments used in Sprite LFS. The optimal segment size
has been increasing since then. This suggests that to be able to scale
with disk technology improvements, an LFS file system should
measure and adapt to its underlying disk performance; [wort95]
outlines a set of techniques for extracting disk parameters on-line.

Figure 3 shows overall write cost for the random update work-
load. Despite the inefficiency of single-block transfers, overall
write cost is still lowest for single block segments (8 kB) because
all cleaning overhead is avoided. (Note, however, that we do not in-
clude segment header overhead in our estimate of overall write
cost.) With more than one block, there is little benefit to smaller
segments. Because blocks are not overwritten in groups, segments
empty slowly; even small segments stay nearly as full as the disk.

We are exploring ways to vary the segment size dynamically by
enabling the cleaner to observe the average length of the runs of
holes in the segments it cleans; a workload with short runs might
benefit from a smaller segment size. Another possibility would be
to format the disk with several fixed segment sizes. One use would
be to exploit the fact that different zones of the disk have different
performance characteristics; the bandwidth between innei and out-
er tracks can vary by as much as 50%. Another use would be to al-
low data to be written into the smaller segments initially and then
cleaned into the larger ones. For workloads with locality, recently
written data is more likely to be overwritten; this would suggest us-
ing smaller segments to maximize the likelihood of emptying seg-
ments as all of their data is overwritten. By contrast, cleaned data
tends to be older and less likely to be overwritten; this suggests us-
ing larger segments to better amortize disk access times. For the

8k 16k 32k 64k 128k256k512k 1M 2M 4M Otd
segment size (bytes)

FIGURE 2. Effect of disk characteristics on
overall write cost for the Auspex workload. Disk
utilization is 85%. The bottom curve with access
time of 17.5 ms and bandwidth of 1.3 MB/s
represents the disks measured in Sprite LFS; note
that Sprite chose a segment size of 1 MB. The
middle curve represents the baseline disk simulated
in this paper, and the top curve represents the
highest performance disk available from Seagatc as
this paper goes to press [Sea97b]. Note thnt the
curve is the same for different disks with the same
access time bandwidth product. For all curves,
overall write cost is minimized for a segment size
of roughly four times bandwidth times access time.
Overall write cost increases for faster disks because
it is harder to match the peak disk performance,

write cost -e-
transfer fnefflclency (Tl

1 I

-+a-
write cost times T -0..

overall wrfle cost -o-

16k 32k 64k 128k256k512k 1M 2M 4M 8M
segment size (bytes)

FIGURE 3. Varying segment size for the
random update workload. Disk utilization is
85%; access time is 15 ms and bandwidth is
5 MB/s. One-block segments avoid all cleaning
costs. Large segments benefit from larger transfers
even though it is difficult to find low utilization
segments to clean. Overall write cost includes the
impact of partial segments; write cost times Ti does
not. Write cost and overall write cost are simulated
quantities. Transfer inefficiency is computed. Note
that the scale of the y-axis for the random workload
graphs in this paper differ from that for the Auspcx
graphs, for example in Figures 1 and 2.

randomupdate workload, newly written segments are not any mom
likely to empty and so would not benefit from the smaller segments,
but at least the cleaned segments could benefit from the larger ones.

242

4.2 Adaptive Cleaning: Choosing the Best Garbage
Collection Mechanism Based on Usage Patterns

In this section, we present an LFS cleaning algorithm that
avoids the dramatic performance degradation seen at high disk uti-
lization while retaining the good performance of traditional LFS
cleaning at lower utilizations. It does this by dynamically choosing
between two mechanisms: traditional LFS cleaning and hole-plug-
ging jWilk96]. Our adaptive method successfully chooses the low-
est cost mechanism based on the observed usage patterns.

4.2.1 Comparing ‘Ikaditional Cleaning With Hole-
p~wgiw

In traditional cleaning, the live blocks in several partially empty
segments are combined to produce a new full segment, freeing the
old partially empty segments for reuse. In many environments, tm-
ditional cleaning performs very well. Idle time can often be exploit-
ed to hide cleaning costs from users; for the workloads examined in
[Blac95], 97% of cleaning could be done in the background.
[McNu94] shows that cleaning costs are relatively low at disk uti-
lizations below 80%. If segment updates show a high degree of lo-
cality, then some segments will be emptier than others and will
yield more free space when cleaned.

The problem with cleaning appears at high disk utilizations, es-
pecially for workloads with many random updates and insufficient
idle time [Selt93, Selt95al. Because segments do not have a chance
to empty before they must be cleaned, the cost of cleaning can sky-
rocket. In order to coalesce one free segment’s worth of space, the
cleaner must process many nearly full segments. Each segment
must be read, and all but the few holes rewritten into a new seg-
ment. Recalling EQ 1, this translates into high SegsReudcr,, and
SegsWrittenCtea,, and therefore high write cost. In an extreme case,
the entire disk might need to be cleaned in order to coalesce a single
contiguous segment.

In hole-plugging, partially empty segments are freed by writing
their live blocks into the holes found in other segments. In order to
produce one free segment’s worth of space, we need only read one
segment and rewrite each of its live blocks. These writes are more
expensive per block than writing complete segments because each
block write requires additional seek and rotational delay. However,
despite the higher per-block cost, at high disk utilizations, hole-
plugging is still better than cleaning because we avoid processing
so many segments. At lower disk utilizations, the larger cost of
writing individual blocks makes hole-plugging more expensive
than traditional LFS cleaning.

In order to compare traditional cleaning with hole-plugging, we
introduce a write cost formula for hole-plugging in EQ 5. In the tra-
ditional LFS cleaning mechanism, all transfers are done in units of
whole segments. However, with hole-plugging, some transfers are
done in units of whole segments (the initial writes of new data,
SegsWrittenD,,, and segments read to be broken up into patches
for holes, SegsReudcte&, while other transfers are in units of in-
dividual blocks (the patches, BlocksWritten~+,t,,~ In prac-
tice, the TransferTimeBtOCk would vary based on

&.
s; e locality of

blocks written. When implementing hole-plugging, it would make
sense to take advantage of this by choosing holes to plug and by or-
dering the block writes to minimize the total latency. We do not
simulate this effect.

(EQ 5)

TransferTimeTOrat

= TransferTimeId,,,

TransferTimeTOrat

= SegmentsWrittenN,,D,, x SegTransferTimeId,,,

where Transferlime~,,~

= TransferTimesee x (SegsWrittenDora + SegsReadCt,,,)
+ TransferTimeglOCkx BIocksWrittenHO,e-ptuggi,,g

There are several ways that hole-plugging could be integrated
into an LFS. In existing LFS implementations, each segment has a
segment header that contains information about its constituent
blocks. In order to maintain this structure, the header would need to
be read and updated for each segment patched. Two headers per
segment would be required to prevent corruption. Alternatively, the
per-block information in the segment header could be distributed
into individual block headers. A 512-byte block header for each
8 kB block would be an overhead of 6.25%. Interspersed block
headers would also reduce read bandwidth by the same amount. In
Figure 4, we evaluate the space-time trade-off between these two
strategies for the random update workload. The block header ap-
proach performs better at 99% utilization than the segment header
approach does at 85% utilization-more than allowing for the
6.25% space overhead. Therefore, we use the block header ap-
proach for the rest of the experiments in this paper.

Figure 4 compares the write cost of cleaning with hole-plug-
ging. Even for this worst-case workload, cleaning performs better
than hole-plugging up through 85% disk utilization. However,
above 85%, the overall write cost of cleaning shoots from below 10
to above 64. Hole-plugging degrades much more gracellly, stay-
ing below 15 for the block header approach.

20 30 40 50 60 70 60 so 100
disk utilization (percent)

FIGURE 4. Cleauine and hole-ulwting for the
random update wokload. Segments& is 256
kB; access time is 15 ms; bandwidth is 5 MB/s.
Hole-plugging with block headers requires
updating the block and its contiguously allocated
header; otherwise the segment header must be read
and written as well. Greedy cleaning is used
because it is optimal for this workload; see
Figure 6 for a comparison with cost-age. Although
this point is not shown, at 99% utilization, the
overall write cost for cleaning soars to 64.5.

243

ilole-p;“ggi”g’ (blcc~ headk
1 ’
d-

cleaning (cost-age +

3

‘20 30 40
disk%iza% (pZZent)

80 90 100

FIGURE 5. Cleaning and hole-plugging for the
Berkeley Auspex workload. Segment size is 256
kI3; access time is 15 ms; bandwidth is 5 MB/s.
Cost-age cleaning is used. Cleaning performs as
well or better than hole-plugging except above
99% disk utilization. Note the change in the scale
of the y-axis relative to Figure 4.

Figure 5 shows the behavior of both cleaning and hole-plug-
ging for the Berkeley Auspex workload. Cleaning performs as well
or better than holeplugging up to 99% utilization for this workload.

Holeplugging could be considered a generalization of write-
ahead logging; writeahead logging writes the new updates to the
log and then later writes them on top of the “holes” that those up-
dates created. Writeahead logging offers consistent performance
by paying the constant cost of one batched write plus one in-place
block write per block written. Similarly, we might expect hole-
plugging costs to remain fairly constant. However, in Figures 4-5,
the cost of holeplugging decreases with lower disk utilization. This
is because at low disk utilization many segments empty completely
before they must be processed and hole-plugging, unlike write-
ahead logging, can benefit from this effect.

4.2.2 Adaptive Cleaning Policy
In order to retain the good common case performance of tradi-

tional cleaning while avoiding its dramatic performance degrada-
tion at high disk utilizations, we introduce a policy that chooses
adaptively between cleaning and hole-plugging at each garbage
collection opportunity. (This is orthogonal to the policy used to
choose which segments to clean.)

When garbage collection is needed, we first choose candidate
segments for both traditional cleaning and hole-plugging. For
cleaning, the candidate segments are the ones that will be compact-
ed to form new segments. We simulated both greedy and cost-age
cleaning policies. For hole-plugging, the candidate segments are
those whose live blocks will be used to fill in the holes found else-
where. As in AutoRAID, we use the least utilized segments to plug
the holes in the most utilized segments.

Once we have identified the candidates, we estimate the cost-
benefit of each approach with EQ 6 and EQ 7.

Cost is expressed in terms of the total time to perform the gar-
bage collection. Benefit is expressed in tenns of free space re-
claimed. For hole-plugging, the cost is the time to read the
candidate segments and write their live blocks into holes found in
other partially empty segments; the space freed is the size of all the
candidate segments read. For cleaning, the cost is the time to read
the candidate segments and rewrite their live blocks as whole seg-
ments to the end of the log; the space freed is the size of all the emp-
ty blocks found in the candidate segments.

@Q 6)

where Transfernmeclea,,in,

= (CandidatesRead + LiveBlocks/BlocksPerSeg) X

TransferTimeseg

and SpaceFreedclea,,i,,g

= EmptyBlocks x BlockSize

where Transfer~meH,le-~Iugging

= CandidatesRead x TransferTime&* +
LiveBlocks x TransferTimeglOck

aid SpaceFreedHcre-plug~ing
= CandidatesRead x SegmentSize

Once we have calculated these cost-benefit estimates, wo slm-
ply choose the mechanism with the lower estimate. Note thnt this
decision applies only to the current garbage collection opportunity,
At the next opportunity, we may choose the other appronch.

In Figure 6, we show cleaning, hole-plugging and the adaptive
policy for the random update workload. We include greedy clean-
ing as well as cost-age since greedy has been shown to have slightly
better performance than cost-age on a random workload [Rose92n,
Selt95bl. The adaptive policy correctly shifts from cleaning to
hole-plugging at the appropriate point. We are indeed able to retain
the good common case performance of traditional cleaning whllo
avoiding its dramatic performance degradation at high disk utllizn-
tions.

1 I t I I I

20 30 40 50 60 70 80 90 100
disk utlllzatlon (percent)

FIGURE 6. Adaptive cleaning for the random
update workload. Note that the hole-plugging and
greedy cleaning curves are the same as in Figure 4.
The adaptive algorithm chooses between holc-
plugging and greedy cleaning: it correctly follows
the lower cost mechanism at each point.

244

1
2040 6070 8085 90 9596 97 98 99

disk utilization (percent)

FIGURE 7. Adaptive cleaning for the Berkeley
Auspex workload. Note that the hole-plugging
and cost-age cleaning curves are the same as in
Figure 5. The x-axis is on a reverse log scale in
order to show clearly the region above 90%.
Adaptive outperforms both hole-plugging and
cleaning because it can choose the appropriate
method at each garbage collection opportunity.

In Figure 7, we show cleaning, hole-plugging, and the adaptive
policy for the Berkeley Auspex workload. Notice that at some
points the adaptive policy performs better than the minimum of
cleaning and hole-plugging by doing each when appropriate.

This adaptive method could also be used to adapt between any
additional garbage collection mechanisms given a correct cost-ben-
efit model of their behavior.

Changes in disk characteristics also have an impact on the
trade-off between cleaning and hole-plugging, making the need for
adaptive cleaning even more acute. Disk bandwidth has been im-
proving faster than disk access times, resulting in higher relative
block transfer costs. Figure 8 shows that on a faster disk the gap be-
tween hole-plugging and cleaning is larger at lower diskutilizations
and that the crossover point is later. Similarly, on RAID systems,
hole-plugging would be penalized relative to cleaning because of
the need to read the old data in blocks being plugged in order to up-
date parity.

4.3 Using Cached Data To Reduce Write Cost
In this section, we describe how to reduce cleaning costs by tak-

ing advantage of data that is already cached. When a segment is
completely cached, it can be cleaned by writing its live blocks-
there is no need to do a disk read. This lowers the
Se~l~terltsReadCI,,,, component of write cost in EQ 1. As far as we
know, no LFS implementation performs this optimization.

In exploring this possibility, we consider two different cleaning
policies: normal cost-age in which cached data is not used, and a
modified cost-age (cost-age-cache) in which fully cached segments
are preferentially chosen by taking into account that a segment is
cached in the cost-age formula. For this modified policy, when a
segment is cached, the cost portion of the cost-age function in-
cludes only the cost to write out the live blocks and not the cost to
read the complete segment.

We implemented the modified cleaning policy in our simulator
by keeping an in-memory set of cached segments; its size is limited
to the number of complete segments that fit in memory. As a block
leaves the cache, we check this set and remove its segment if nec-
essary. We track only segments that remain completely cached af-
ter being written; detecting when full segments re-enter the cache
would complicate the implementation for only marginal benefit.

I t 1 1 1 1

20 30 40 50 60 70 80 90 100
disk utilization (percent)

FIGURE 8. Effect of disk characteristics on the
trade-off between cleaning and hole-plugging,
for the random update workload. Note that the
slow curves are the same as in Figure 6, using a
disk with 15 ms access time and 5 MB/s
bandwidth. The fast curves use a disk with 10 ms
access time and 15 MB/s bandwidth. Cleaning
performs relatively better than hole-plugging on
the fast disk because of the larger gap between
block transfer efficiency and segment transfer
efficiency. Overall write cost increases for the fast
disk because it is harder to match the peak disk
performance.

8M 16M 32M 64M 128M 256M 512M 1G
sewer cache size (bytes)

FIGURE 9. Varying server cache size for the
Auspex workload. Segment size is 256 kB; access
time is 15 ms; bandwidth is 5 MB/s. Three
different disk utilizations are shown for both
normal cost-age and cost-age that uses cached data.
The client cache size is set to zero as described in
section 3.2. This graph shows the reduction in
overall write cost obtained by exploiting cached
data during cleaning. The benefit is greater at
higher disk utilizations.

We see significant improvement even though we do not take advan-
tage of segments that are re-cached.

In Figure 9, we show the impact of increasing server cache size
on overall write cost for the Berkeley Auspex workload at various
disk utilizations. The top group of lines illustrates the behavior
when the disk is 95% utilized. The next two groups of lines are with
the disk at 85% and 60% utilization, respectively.

As expected, the performance of the cost-age policy is insensi-
tive to cache size. Indeed, all of the cost-age lines are flat. For the

245

cost-age-cache policy, there is more benefit with larger caches as
one would expect.

We see incremental benefit even up through 1 GB, indicating
that the working set of the Auspex trace is larger than 1 GB. This is
unsurprising considering that the total data held on the server was
approximately 100 GB of binaries and home directories. At a cache
size of 256 MB and disk utilization of 95%, we see an 11% reduc-
tion in overall write cost corresponding to a 30% reduction in clean-
ing overhead.

In addition, the benefit of cleaning from cache increases as the
utilization of the disk increases. To illustrate why,.we consider the
effect on the cost-age formula for cleaning a single segment as the
utilization of that segment increases. For a highly utilized segment,
we reclaim less space and therefore the read that we avoid has high-
er cost relative to the amount of space reclaimed. To see this quan-
titatively, consider the cost-age formulas. Recall from section 3.1
that when we are unable to use cached daFp;void reading the seg-
ment, the cost-age of the segment is , where u is the

ax (l-u)
percentage of live blocks in the segment and a is the age of the seg-
ment. When we are able to use cached data to avoid y read, the
cost-age drops to u . Their difference, , is

ax (l-u) ax (l-u)
larger for segments with greater utilization.

As overall disk utilization increases, LFS will have to clean
segments with higher utilization. As a result, the increased benefit
for fuller segments translates directly into increased benefit for firll-
er disks. Interestingly, this means that using cached data is especial-
ly helpful in addressing the worst-case performance of LFS at high
disk utilizations.

Also, notice that we begin to see benefit at smaller cache sizes
as the utilization increases. At lower utilizations, we can wait long-
er to clean; therefore, we need a larger cache in order to still be
holding the segments we are interested in cleaning.

4.4 Putting It All Together
Figure 10 shows the combined impact of the optimizations we

have discussed in this section relative to original LFS. There is up
to a 20% reduction in overall write cost for the Berkeley Auspex
trace and an up to four-fold reduction for the random workload.
That corresponds to a 42% and almost six-fold reduction in cleaner
overhead, respectively. Log scale is used to clearly’display both
workloads.

4.5 Future Work
Other opportunities exist to use self-tuning to improve LFS

write performance. For example, one promising area is to adaptive-
ly exploit the differences in access characteristics of rapidly chang-
ing data versus more stable data.

For example, existing cleaning policies use the age of a seg-
ment to approximate the rate at which its blocks are being overwrit-
ten, because long term cleaning costs are minimized by
aggressively cleaning segments that are partially full of relatively
stable data. However, users change their working sets from time to
time, resulting in old segments being rapidly updated, while newer
segments are more stable. And for a random workload, using age to
approximate rate of change is suboptimal We have devised but not
evaluated a self-tuning algorithm for choosing which segments to
clean that takes advantage of this effect.

ts 8 16

Gz
3 6 =
p!

zi 4

II I I I

'2040 6070 8085 90 9596 97 98 99
disk utilization (percent)

FIGURE 10. Overall write cost of original LFS
versus modified LFS. Segment size is 256 kB;
server cache size is 128 MB; access time is 15 ms;
bandwidth is 5 MB/s; client cache size is 16 MB.
Note the log scale on both axes. This graph shows
the aggregate effect on overall write cost of using
both adaptive cleaning and cached data. The
segment size is the same for all curves. However,
an additional benefit would be obtained for the
Auspex trace if the Sprite LFS segment size of 1
MB was used for the original LFS curves (see
Figures l-2).

5 Improving Read Performance

In LFS, data that is written together is grouped together on disk,
If read patterns follow write patterns, this data layout will also work
well for reads. However, for workloads where this is not true, LFS
can be modified to detect expensive read patterns and reorganize
accordingly. In fact, the cleaner is already reorganizing data to re-
claim free space for writes, and the same mechanisms can be used
to reorganize data for reads.

5.1 Motivation for Reorganizing Data for Reads
LFS was originally designed to be a write-optimized file sys-

tem and therefore most LFS performance evaluations have focused
on write cost as their primary metric. Despite the emphasls on
writes, it has been speculated that LFS would still offer good read
performance.

First, data is often read as it is written. In that case, the temporal
locality of LFS will be as effective as the semantic locality of up-
date-in-place systems. Studies of traditional UNIX workloads
[Bake911 show that most files are written and read sequentially.
However, there are workloads for which reads patterns do not
match write patterns. Even for a UNIX workload, LFS may often
do a poor job of keeping the contents of a directory together. For
example, if all files in the directory are actively read but only some
are actively written, the actively written files will move far away
from the read-only ones. As long as the data remains cached, there
is no penalty; once the data is demoted, however, the penalty of
fetching the files in the directory from disk will be higher than in an
update-in-place system. Another problematic workload is random
writes followed by sequential reads. Decision support databnse
workloads can exhibit this pattern. Random updates are applied to
the active portion of the database and then sometime later large
sweeping queries read relations sequentially [Tran95].

Second, it was initially argued that almost all reads would be
satisfied from large caches and therefore would be unaffected by
disk layout. However, the rapid fluctuation in the relative cost pcf

246

byte of disk and DRAM make such predictions uncertam at best.

More importantly, the large and widening gap between CPU and
disk performance has meant that file system read response times are
dominated by disk accesses, even for very high cache hit rates
[Dahl95].

Third, Ousterhout has argued that while fragmentation in an
FFS degrades performance for both reads and writes, LFS cleaning
has no ill effects on read cost [Oust95c]. However, this is not obvi-
ous since cleaning coalesces blocks from different segments to-
gether even though the contents of these segments are unrelated
both semantically and temporally.

In this section, we explore one approach to reorganizing data
for reads-a dynamic algorithm that operates at the granularity of
blocks. Since there are many other possible approaches (for exam-
ple, an algorithm based on regrouping semantic units), at this time,
we do not attempt to conclude that the reorganization algorithm we
are currently exploring is the best. Our goal in this paper is to ex-
plore one attractive possibility based on self-tuning principles and
to reopen a discussion on the opportunity to improve LFS read per-
formance for some workloads.

5.2 Dynamic Reorganization
The goal of dynamic data reorganization is to arrive at an opti-

mal data layout based on observed access patterns. To accomplish
this, the reorganizer must solve three problems. First, it needs to
keep track of the history of previous events. Second, it must find a
layout that would deliver near-optimal performance for the ob-
served access patterns, assuming that past events are a good predic-
tor of future access patterns. Third, it must analyze the difference
between the current layout and the desired layout and if necessary
issue I/O requests to correct the difference.

5.2.1 ‘backing File Access History
To capture the past access pattern, we build a block accerr

graplt, similar to the file access graphs proposed by [Grif94], for
use in prefetching file data into memory. Intuitively, reorganizing
data for reads is complementary to prefetching. Prefetching must
identify blocks or files that are used together to know what to pull
into memory. Reorganizing data for reads requires the same infor-
mation and uses it to organize file blocks so that when they are read
(or prefetched) from disk it can be done efficiently.

Each node in the file access graph represents a file block. An
edge connecting node A and node B denotes that block B was ac-
cessed immediately after block A. The edges are weighted by the
number of such accesses.

One concern with this approach is the amount of storage re-
quired to accommodate the growth of the edge lists. We experi-
mented with some simple approaches of pruning the graph and
found that we can successfully reduce the storage costs by limiting
the number of outgoing edges and pruning them in LRU order. This
simple approach proves effective because the number of neighbors
per node follows a bimodal distribution. Most nodes have only a
few neighbors that can all be represented in limited space. A few
nodes have many neighbors, but in that case it is less important to
record them all because a large number of neighbors indicates that
there is not a dominant access pattern for which we could optimize.
The data structure we use to represent a graph node includes a block
identifier, the last reference time, and a pointer to each neighbor re-
corded. We varied the number of neighbors recorded from 4 to 16
and saw negligible impact on graph quality. A graph node record-
ing 4 neighbors is 48 bytes, about 0.6% overhead for an 8 kB block.
When a block is not being referenced, its graph node could also be
paged to disk to limit the amount of memory used.

5d.z computmg uptmm Layout
Once we have captured the file system events in the access

graph, the next challenge is to find a disk layout strategy that will
optimize for the observed usage pattern. Such a layout strategy will
attempt to place blocks that are frequently accessed together close
to one another in order to minimize seek and rotational delays. We
observe that given an access graph, finding such a layout is an ap-
plication of the more general irregular graph partitioning problem.
More specifically, we must partition the file access graph into some
number of roughly equal parts, such that the number of edges con-
necting nodes in different parts is minimized. By maximizing the
number of internal edges and minimizing the number of external
edges, we discover a partitioning of the file blocks such that blocks
in the same partition are frequently accessed together, while blocks
in different partitions are rarely accessed together.

Although the general irregular graph partitioning problem is
NP-complete, there exist many heuristic solutions in the literature
[Bam93,Hend93]. We have adopted a simple dynamic graph parti-
tion algorithm based on these heuristic solutions for our data reor-
ganizer. For each read access, we create an edge between the
current block and the previous block (or increment the weight of an
existing edge). If the previous block is in a different partition than
the current block, we shift the existing partition boundaries to bring
the nodes in question closer, if doing so would result in new parti-
tions which minimize inter-partition edges.

We have validated our dynamic algorithm by comparing the
partition qualities of our algorithm with that of a well known off-
line graph partitioning package Eary95]. For tile access graphs
based on the Berkeley Auspex traces, the partitions produced by
our data reorganizer were better than or equivalent to those gener-
ated by the off-line algorithm, even with only 4 neighbors recorded
per block. This algorithm required approximately 130 ps per block
read.

5.2.3 Selecting Data to Reorganize
Partitioning the file access graph allows us to identify the data

blocks that should be located near each other. Based on this graph,
we may need to issue I/O requests to improve the current data lay-
out. In order to do this, the data reorganizer monitors three variables
for each partition: (1) the current disk locations of the partition
members and their corresponding access costs, (2) the new access
costs of the partition members if they were brought together by the
data reorganizer, and (3) the likelihood that the partition will be ac-
cessed again. We place the partitions into a priority queue ordered
by a ranking based on these three variables. Currently, we place
partitions on the queue when the expected time to read the partition
exceeds the ideal and we order the queue by frequency of access.
Partitions can be removed from the priority queue and reorganized
at convenient times, such as during idle periods, when the partition
is brought into memory, or when the partition is about to be evicted
from memory.

5.2.4 Evaluation
We first evaluated the impact of reorganization for the Berke-

ley Auspex trace and were unsurprised to see little benefit. In order
to evaluate the benefit of reorganization, we must know the default
layout that was produced as the data was originally written and then
subsequently cleaned. Unfortunately, we do not know the original
disk layout at the start of the trace. We expect reorganization to be
especially valuable for cold data and by definition, we do not see
the writes for cold data in the trace.

We chose to use a semi-synthetic benchmark to approximate
the uncached read portion of a software development workload.
When a developer visits a new region of the source tree, those reads
are uncached, and observed file system performance will depend on

247

2 141 1 I
-ii 12 , orig LFS .+,/

..*‘\

2
-*,.- u-., ,

10 8 ,,Ji’

+hh-?dk

a 4r LFS with reorganizer \ et __- .{ g 0 10 20 30 40 50 60 70
compile iteration

FIGURE 11. Average disk read response time
per 8 kB bIock for the synthetic compilation
workload. The y-axis reports the average time to
complete an 8 kB disk read for each compile
iteration; the x-axis represents the passage of time.
The HP97560 disk model was used. For original
LFS, the response time increases from 8 ms to
around 12 ms during the measurement period.
With reorganization turned on, the response time
is kept stable around 6.5 ms.

how quickly the data can be retrieved from disk. Once the data is
read in, software development becomes write-dominated, until the
developer changes working set, at which point the cycle repeats.

To model uncached reads in a software environment, we mod-
ified the HPUX kernel to record all file system calls generated by
the following benchmark. We first recursively copy a number of C
source directories. We then edit a randomly chosen source file and
compile the entire subdirectory. Finally, we flush the cache to sim-
ulate the passage of time. This cycle is repeated many times. In or-
der to get more accurate estimates of disk read performance, we
hooked our simulator to the HP97560 disk simulator from Dart-
mouth [Kotz94]. We assume that reorganization could be accom-
plished in the background since we are modeling a workload for
which a significant amount of time passes between the edit-compile
cycles.

Figure 11 shows the average time needed to read one 8 kB
block from disk as a function of the number of times we repeated
the edit-compile cycle. The time is dominated by the linking stage,
during which a large number of object files are read. Under LFS
without data reorganization, the object files are placed close to each
other initially. But as we modify the sources, the newly written ob-
ject tiles are moved to the end of the log. As a result, the object tiles
swept by the linking stages are gradually scattered over a large
number of segments, causing a rise in II0 response time. When we
turn on the data reorganizer, it correctly concludes that the object
tiles needed in the linking phases belong to the same file access
graph partitions. As a result, the I/O response time remains nearly
constant with reorganization.

Figure 12 provides further insight into the causes of the perfor-
mance difference. The HP97560 disk controller model [Kotz94] in-
cludes a 64 kB read-ahead buffer cache. The graph shows the
average time a read request spends in the disk cache. As a result of
periodically optimizing layout for read performance, we are able to
raise the read-ahead cache hit rate from 37.9% to 66.8%. As we in-
crease the disk speed from 2.4 MB/s to 5 MB/s, we are able to tin-
ther raise the disk cache hit rate to 79.4% while an unmodified LFS
can only go up to 41.2%.

Software development is not the only example of uncached
read accesses that may be problematic for LFS. For example, many
people store all their mail messages in a single directory and return

read-ahead buffer
Ohit
Omiss

disk disk

orig LFS LFS with reorganizer

FIGURE 12. Breakdown of average disk read
response time per 8K block for the synthetic
compilation workload. Each bar represents the
average time needed to fetch an 8K block from disk
across all iterations reported in Figure 11. Slow
disk refers to the original HP97560 disk model; the
fast disk refers the same model with a bandwidth of
5 MB/s. The top segment in each bar shows the
fraction of the read time for data accesses satisfied
in the disk read-ahead buffer cache. The hit and
miss rates are specified in each column. The
column heights are hit rate times hit time and miss
rate times miss time, respectively.

frequently to search for a desired piece of mail. In LFS, each newly
received mail message will be appended to the current tail of the
log. Since these appends are separated in time, they will not bo
grouped together in the log. When the user tries to search through
the entire directory, there will be many seeks between the scattered
data blocks. Although a user may search this directory frequently,
it is unlikely that the data will still be in the cache after the last
search. Over time, the performance of searching through this direc-
tory will degrade. This is like the effect shown for our benchmark
in Figure 11.

6 Related Work

When LFS was originally introduced [Rose92a, Rose92b], the
design space of this radically new file system organization was ex-
plored with simulations using write cost as a metric. A full lmplc-
mentation of LFS was incorporated into the Sprite operatlng syslcm
and was used in a production environment. Many possible avenues
of improvement to LFS were proposed, but not all of them wcrc ful-
ly pursued, including reorganizing data for reads and the impact of
different segment sizes.

[Selt92, Selt93, Selt95a] further explored the LFS paradigm.
[Selt93] and [Selt95a] describe an implementation of LFS for BSD
and compare it with the Berkeley Fast File System (FFS) and an cn-
hanced extent-based FFS. This work demonstrated that cleaning
costs can seriously degrade LFS performance on workloads with
random updates at high disk utilization, such as the TPC-B bench-
mark. In addition, it is pointed out that certain modifications to an
update-in-place system such as FFS can allow it to achieve some of
the same benefits as LFS.

248

A debate ensued [OustgSa, Oust95b, Selt95b, Oust95c] con-
cerning whether the results presented in [Selt93] and [Selt95a] were
legitimate and representative. Despite the criticism of the results,
they do describe some real problems with LFS that should not be
ignored. In this paper, we investigate ways to enable LFS to provide
reasonable performance even for these problematic workloads.

[McNu94, Blac95, Lome95] all explore enhancements to LFS.
[McNu94] presents a mathematical model of garbage collection
and concludes that disk utilization must be kept below 80% for LFS
to provide good performance. In this paper, we explore solutions
that do not require leaving 20% of the disk unused. [Blac95] con-
siders how much of the garbage collection costs can be shifted into
the background. [Lome95] argues for the use of LFS for databases
and suggests detecting expensive read patterns and simply rewrit-
ing the data in the same order it is read.

[Dah195] makes an initial evaluation of using cached data to
lower cleaning costs. We continue this evaluation by considering
the effects of additional parameters and workloads.

Our section on adaptive cleaning combines traditional LFS
cleaning with another garbage collection mechanism, hole-plug-
ging, that was used in HP AutoRAID [wilk96]. We observe that
hole-plugging is especially beneficial at high disk utilizations,
while cleaning is better at lower disk utilizations (below SO-85%).
In AutoRAID, hole-plugging. is used rather than traditional LFS
cleaning or an adaptive combination of the two, because Auto-
RAID is structured such that hole-plugging always performs better.
The AutoRAID consists of two areas: the mirrored or RAID-l area,
which houses recently updated data, and the RAID-5 area, which
houses older data. The RAID-5 area is the part of AutoRAID that is
log-structured. It is always at high utilization becauseit is constant-
ly cleaned in order to return PEGS (segments) to the free pool where
they can be used for mirrored writes or fresh demotions into the
RAID-5 log. In addition, the updates to the RAID-5 area are fairly
random because the mirrored storage area absorbs the updates to
the hot data. The remaining update stream reaching the RAID-S ap-
plies to cold data and shows very little locality in practice. Thus, the
AutoRAID environment is the worst possible case for traditional
cleaning (high utilized segments that are updated randomly)
[Stae96]. AutoRAID does PEG-cleaning only in the special case
that there are no holes to be plugged; that is when all PEGS but one
are full or empty. In this case, the live blocks from that single PEG
are appended to the end of the RAID-5 write log pNilk961.

There is a significant amount of research into altering disk Iay-
out to improve read performance. [Wong83, Vong90, Ruem91,
AkyU95] discuss the benefits of placing the most frequently access-
ed data in the middle of the disk where it is most likely to be close
to the disk head. These systems do restructuring at either the cylin-
der or block level. They use the disk controller or the device driver,
not the file system, to monitor access frequencies and the move da-
ta. [AkyU95] limits the number of blocks for which information
must be maintained much like we do; however we are maintaining
information about the relationships between blocks where they are
maintaining access frequencies. [Ruemgl] evaluates the benefits
for an update-in-place file system and conjectures that the benefits
would be even greater for a file system that did not do such a good
job of initial data placement. mcDo89, Staegl] explore file system
directed reorganization at the granularity of whole files. Update-in-
place systems such as FFS lMcKu84] reduce average disk access
times by collecting statically related data in cylinder groups.

The problem of organizing data for reads is very similar to
prefetching. In order to facilitate prefetching, [Grif94] proposes a
file access graph similar to the one we use to reorganize data for
read accesses. [Kroe96] uses a data compression technique, predic-
tion by partial match, to predict file system activity and thus im-
prove the effectiveness of prefetching.

We observe that partitioning the access graph used to capture

file system activity is an application of the more general irregular
graph partitioning problem. Although the general problem is NP-
complete, there exist many heuristic solutions in the literature
iBam93, Hend931.

There is a recent trend towards incorporating LFS techniques
into other file system architectures. Network Appliance’s file sys-
tem, WAFL, improves write performance for their RAID array by
writing multiple blocks in a stripe [H&95]. Sweeney et al. recently
incorporated location-independent inodes, an idea from LFS, into
XFS [Swee96], a write-ahead logging file system. As in LFS, loca-
tion-independent inodes would make it easier to incorporate a disk
reorganizer. In contrast, most traditional file systems, such as FFS,
fix the disk location of a file’s inode (containing the table of point-
ers to the file’s data blocks) when the file is first created, because a
physical pointer to the inode can be embedded in any number of di-
rectories, moving an inode in FFS could require scanning the entire
disk.

7 Conclusions

In this paper, we have argued that self-tuning-measuring both
the underlying hardware and the workload of a system, and then dy-
namically adapting to match-is a powerful paradigm for improv-
ing the performance of file systems. We illustrated self-tuning
principles with four optimizations to log-structured tile systems:
choosing the segment size to trade-off transfer efficiency against
cleaning efficiency; dynamically choosing the cleaning method to
provide good performance across the spectrum of disk utilizations
and workload patterns; factoring in cache contents to reduce the
cost of cleaning; and re-organizing disk contents to improve read
performance. We believe that together these improvements make
log structure a much more attractive alternative for file system de-
sign.

8 Acknowledgments

We would like to thank Mike Dahlin for his help with earlier
versions of this work, Margo Seltzer for helping in understanding
how to integrate hole-plugging into BSD/LFS and for her encour-
agement, John Wilkes, Carl Staelin and Terry Burkes for answering
numerous questions about HP AutoRAID and for their many help-
ful comments, and John Ousterhout and Eric Anderson for their
feedback on earlier drafts. We would also like to thank the program
committee, as well as the other anonymous referees, for their com-
ments that were a great help in revising the paper.

9 References

[Akytt95] S. Akyiirek and K. Salem. Adaptive Block Rearrange-
ment. ACM Transactions on Computer Systems, 13(2):89-
121, May 1995.

[Ande96] T. Anderson, M. Dahlin, J. Neefe, D. Patterson,
D. Roselli. and R. Wang. Serverless Network File Systems.
ACM Transactions on Computer Systems, 14(1):41-79,
Feb. 1996.

IBake M. Baker, J. Hartman, M. Kupfer, K. Shin-iff, and
J. Ousterhout. Measurements of a Distributed File System.
Proc. Thirteenth ACM Symposium on Operating Systems
Principles, pp. 198-212, Oct. 1991.

249

@3arn93] S. Barnard and H. Simon. AFast Multilevel Implementa-
tion of Recursive Spectral Bisection for Partitioning Un-
structured Problems. Proc. Sixth SIAM Conference on
Parallel Processing for Scientific Computing, pp. 711-718,
1993.

[Bin931 A. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart.
The Echo Distributed File System. Technical Report 111,
Digital Equipment Corp. Systems Research Center, Sep.
1993.

’ [Blac95] T. Blackwell, J. Harris, andM. Seltzer. Heuristic Cleaning
Algorithms in Log-Structured File Systems. Proc. 1995,
Winter USENIX Conference, pp. 277-288, Jan. 1995.

[Chen94] P. Chen, E. Lee, G. Gibson, R. Katz, and D. Patterson.
RAID: High-Performance, Reliable Secondary Storage.
ACM Computing Surveys, 26(2):145-188, Jun. 1994.

[Chut92] S. Chutani, 0. Anderson, M. Kazar, B. Leverett,
W. Mason, and R. Siedbotham. The Episode File System.
Proc. 1992 Winter VSENIX Conference, pp. 43-60, Jan.
1992.

[Cust94] H. Custer. Inside the Windows NTFile System. Microsoft
Press, 1994.

[Dah194] M. Dahlin, C. Mather, R. Wang, T. Anderson, and
D. Patterson. A Quantitative Analysis of Cache Policies for
Scalable Network File Systems. Proc. SlGMETRICS Con-
ference on Measurement and Modeling of Computer Sys-
tems, pp. 150-160, May 1994.

[Dah195] M. Dahlin. Serverless Network File Systems. PhD Thesis.
University of California, Berkeley, Dec. 1995.

[Gang941 G. Ganger and Y. Patt. Metadata Update Performance in
File Systems. Proc. First Symposium on Operating Systems
Design and Implementation, pp. 49-60, Nov. 1994.

[Gold951 R. Golding, P. Bosch, C. Staelin, T. Sullivan, and
J. Wilkes. Idleness is Not Sloth. Proc. 1995 Winter US-
ENIX Conference, pp, 201-202, Jan. 1995.

[Grif94] J. GriflioenandR. Appleton. ReducingFileSystemLaten-
cy Using A Predictive Approach. Proc. 1994 Summer US-
ENIX Conference, pp. 197-207, Jun. 1994.

[Hagm87] R. Hagmamr. Reimplementing the Cedar File System
Using Logging and Group Commit. Proc. Eleventh ACM
Symposium on Operating Systems Principles, pp. 155-162,
Oct. 1987.

[Hart931 J. Hartman and J. Ousterhout. The Zebra Striped Network
File System. ACM Transactions on Computer Systems,
13(3):274-310, Aug. 1995.

[Hend93] B. Hendrickson and R. Leland. A Multilevel Algorithm
for Partitioning Graphs. Technical Report SAND93-1301,
Sandia National Laboratories, 1993.

[Hit2941 D. Hitz and J. Lau and M. Malcolm. File System Design
for an NFS Server Appliance. Proc. 1994 Winter USENIX
Conference, pp. 235-246,1994.

[Jaco88] V. Jacobson and M. Karels. Congestion Avoidance and
Control. Proc. SIGCOMM Conference on Data Communi-
cation. Nov. 1988.

[Jacogl] D. Jacobson and J. Wilkes. Disk Scheduling Algorithms
Based on Rotational Position. Technical Report HPLCSP-
91-7rev1, Hewlett-Packard Laboratories, Palo Alto, CA,
Mar. 1991.

lKary95] G. Karypis and V. Kumar. A Fast and High Quality Mul-
tilevel Scheme for Partitioning Irregular Graphs. Technical
Report TR 95-035, University of Minnesota, 1995.

[Kotz94] D. Kotz, S. Toh, and S. Radhakrishnan. A Detailed Simu-
lation Model of the HP 97560 Disk Drive. Technical Rc-
port PCS-TR94-220, Dartmouth, Jul. 1994.

lKowa78] T. Kowalski. FSCK: The UNIX System Check Program.
Technical report, Bell Laboratory, Murray Hill, NJ, Mar,
1978.

[Kroe96]. T. Kroeger and D. Long. Predicting Future File-System
Actions From Prior Events. Proc. 1996 USENIX Conferd
ence, pp. 319-328, Jan. 1996.

[Lome D. Lomet. The Case for Log Structuring in Database
Systems. Int’l Workshop on High Performance Transac.
tion Systems, Sep. 1995.

llvlcDo89] M. McDonald and R. Bunt. Improving File System Per-
formance by Dynamically Restructuring Disk Space. Proc,
Phoenix Conference on Computers and Communication
(Scottsdale, AZ), pp. 264269, Mar. 1989.

mcNu94] B. McNutt. Background Data Movement in a Log
Structured File System. IBM Journal of Research and De.
velopment, 38(1):47-58,1994.

lMcKu84] M. McKusick, W. Joy, S. Leffler, and R. Fabry. A Fast
File System for UNIX. ACM Transactions on Computer
Systems, 2(3):181-197, Aug. 1984.

FrcVoSl] L. McVoy and S. Kleiman. Extent-like Performance
from a UNIX File System. Proc. I991 Winter USENIX
Conference, pp. 33-43, Jan. 1991.

lMath96] M. Mathis and J. Mahdavi. Forward Acknowledgment:
Refining TCP Congestion Control. Proc. SIGCOMM Con-
ference on Data Communication. Aug. 1996.

[Oust95a] J. Ousterhout. A Critiqueof Seltzer’s 1993 USENIX Pa-
per.http://www.sunlabs.com/people/john.ousterhout/
seltzer93.htmL 1995.

[Oust95b] J. Ousterhout. A Critique of Seltzer’s LFS Measure-
ments. http://www.sunlabs.com/people/john,ousterhout/
seltzer.html

[Oust95c] J. Ousterhout. A Response to Seltzer’s Response. http://
www.sunlabs.com/peopleljohn.ousterhout/seltzer2~hlml,

lRitc74] D. Ritchie and K. Thompson. The UNIX Timesharing
System. Communications of the ACM. 17(7), pp. 365-375,
Jul. 1974.

pose92a] M. Rosenblum and J. Ousterhout. The Design and Im-
plementation of a Log-Structured File System. ACM Trans-
actions on Computer Systems, 10(1):2&52,‘Feb. 1992,

[Rose92b] M. Rosenblum. The Design and Implementation of a
Log-structured File System. PhD Thesis. University of Cnl-
ifomia, Berkeley, Jun. 1992.

[Ruem91] C. Ruemmler and J. Wilkes. Disk Shuffling, Tech&al
Report HPL-91-156. Hewlett-Packard Laboratories, Palo
Alto, CA, Oct. 1991.

[Ruem93] C. Ruemmler and J. Wilkes. A Trace-driven Analysis of
Disk Working Set Sizes. Technical Report HPLOSR-93.
23. Hewlett-Packard Laboratories, Palo Alto, CA, Apr. 4,
1993.

250

[Sea97a] Seagate Technology, Inc. Hawk 2XL Family 3.5inch
Driives, http:llwww.seagate.com&iscihawkl
hawk2xlscsi3.shtmL 1997.

[Sea97b] Seagate Technology, Inc. Cheetah Family 3.5inch Form
Factor. http://www.seagate.com/disclcheetah/cheetah.sht-
ml, 1997.

lWort951 B. Worthington, G. Ganger, W. Patt and J. Wilkes. On-
line Extraction of SCSI Disk Drive Parameters. Proc. SZG-
METRICS Conference on Measurement and Modeling of
Computer Systems, pp. 146-156, May 1995.

[Selt90] M. Seltzer, P. Chen, and J. Ousterhout. Disk Scheduling
Revisted. Proc. 1990 Winter USENLX Conference, pp.
313-324, Jan. 1990.

[Selt92] M. Seltzer. File System Performance and Transaction Sup-
port. PhD Thesis. University of California, Berkeley, Dec.
1992.

[Selt93] M. Seltzer, K. Bostic, M. McKusick, and C. Staelin. An
Implementation of a Log-Structured File System for UNIX.
Proc. 1993 Winter USENIX Conference, pp. 307-326. Jan.
1993.

[Selt95a] M. Seltzer, K. Smith, H. Balakrishnan, J. Chang,
S. McMains, and V. Padmanabhan. File System Logging
Versus Clustering: A Performance Comparison. Proc.
1995 Winter USENZX Conference, pp. 249-264, Jan. 1995.

[Selt95b] M. SeltzerandK. Smith. AResponse toousterhout’s Cri-
tique of LFS Measurements. http://www.eecs.harvard.edu/
-margo/usenix.l95/ouster.html.

[Smit96] K. Smith and M. Seltzer. A Comparison of FFS Disk Al-
location Polices. Proc. 1996 USENLX Conference, pp. 15-
26, Jan. 1996.

[Smit97] K.Smith and M. Seltzer. File System Aging - Increasing
the Relevance of File System Benchmarks. Proc. SIGMET-
RICS Conference on Measurement and Modeling of Com-
puter Systems, Jun. 1997.

[Staegl] C. Staelin and H. Garcia-Molina. Smart Filesystems.
Proc. 1991 Winter USENIX Conference, pp. 45-51, Jan.
1991.

[Stae96] C. Staelin. Discussion at UC Berkeley. Personal Commu-
nication. Nov. 1996.

[Swee96] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nish-
imoto, and G. Peck. Scalability in the XFS File System.
Proc. 1996 USENIX Conference, pp. 1-14, Jan. 1996.

[Tran9Oa] Transaction Processing Performance Council. TPC
Benchmark B Standard Specification. Waterside Associ-
ates, Fremont. CA, Aug. 1990.

~ran90bJ Transaction Processing Performance Council. TPC
Benchmark C Stanabd Specification. Waterside Associ-
ates, Fremont, CA, Jul. 1990.

[Tran95] Transaction Processing Performance Council. TPC
Benchmark D Standard Specification. Waterside Associ-
ates, Fremont, CA, Apr. 1995.

[Vet-i951 Veritas Software. The VERITAS File System (VxFS).
http://www.veritas.com/products.html, 1995.

[Vong90] P. Vongsathom and S. Carson. A System for Adaptive
Disk Rearrangement. Sofhare: Practice and Experience.
20(3):225-242, Mar. 1990.

[wilk96] 3. Wilkes,R. Golding, C. Staelin, andT. SullivanTheHP
AutoRAID Hierarchical Storage System. ACM Transac-
tions on Computer Systems, 14(1):108-136, Feb. 1996.

[Wong83] C. Wong. Algorithmic Studies in Mass Storage Systems.
Computer Science Press, 1983.

251

